Heavy metals attract a great deal of attention nowadays due to their potential accumulation in living creatures and transference in the food chain. Sediments of water reservoirs are considered to be a source of accumulation of these metals that develop in response to human activities and soil erosion. This study collected 180 samples of the surface sediments of water reservoir 1 at Chahnimeh in Sistan. Efficiency of the ANFIS model was evaluated to estimate the five bonds following the measurement of parameters in the laboratory.The following results were obtained for the parameters: organic carbon (OC) %, 0.31; cation exchange capacity (CEC), 37.07 Cmol kg; total Pb, 25.19 mg/kg; clay %, 45.87; and silt %, 39.02. These parameters were used as input for the training model. In the output layer, lead bonds were chosen as modeling targets in the following way: Pb f1 (4.61); Pb f2 (0.54); Pb f3 (16.28); Pb f4 (3.42); and Pb f5 (0.38) mg/kg. The best input compound in this model was chosen using the gamma test. From a total of 180, 88 data were considered for the model training section. Eventually, the neural-fuzzy model (subtractive clustering), developed for the prediction of lead bonds in the studied region, was able to account for over 99% of lead bonds in the sediments; considering statistical criteria of root mean squares error or RMSE (0.0337-0.0813) and determination coefficient or R (0.92-0.99), this model showed good performance with regard to prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.