Pipeline networks dominate the oil and gas midstream sector, and although the safest means of transportation for oil and gas products, they are susceptible to failures. These failures are due to manufacturing defects, environmental effects, material degradation, or third party interference through sabotage and vandalism. Internet of Things (IoT)-based solutions are promising to address these by monitoring and predicting failures. However, some challenges remain in the deployment of industrial IoT-based solutions, as the reliability, the robustness, the maintainability, the scalability, the energy consumption, etc. This paper is therefore aimed at highlighting potential solutions for detection and mitigation of pipeline failures while addressing the robustness, the cost and scalability issues of such approach efficiently across the network infrastructure, data and service layers.
Crude oil leakages and spills (OLS) isare some of the problems attributed to pipeline failures in the oil and gas industry’s midstream sector. Consequently, they are monitored via several leakage detectiondetection and localisation techniques (LDTs) comprising classical methods and, recently, Internet of Things (IoT)-based systems via wireless sensor networks (WSNs). Although the latter techniques are proven to be more efficient, they are susceptible to other types of failures such as high false alarms or single point of failure (SPOF) due to their centralised implementations. Therefore, in this work, we present a hybrid distributed leakage detection and localisation technique (HyDiLLEch), which combines multiple classical LDTs. The technique is implemented in two versions, a single-hop and a double-hop version. The evaluation of the results is based on the resilience to SPOFs, the accuracy of detection and localisation, and communication efficiency. The results obtained from the placement strategy and the distributed spatial data correlation include increased sensitivity to leakage detection and localisation and the elimination of the SPOF related to the centralised LDTs by increasing the number of node-detecting and localising (NDL) leakages to four and six in the single-hop and double-hop versionversions, respectively. In addition, the accuracy of leakages is improved from 0 to 32 m in nodes that were physically close to the leakage points while keeping the communication overhead minimal.
Failures in pipeline transportation of crude oil have numerous adverse effects, such as ecological degradation, environmental pollution and a decrease in revenue for the operators, to mention a few. Efficient data and service management can predict and prevent these failures, reducing the downtime of the pipeline infrastructure, among other benefits. Thus, we propose a two-stage approach to data and service management in Leakage Detection and Monitoring Systems (LDMS) for crude oil pipelines. It aims to maximise the accuracy of leakage detection and localisation in a fault-tolerant and energy-efficient manner. The problem is modelled as a Markov Decision Process (MDP) based on the historical incident data from the Nigerian National Petroleum Corporation (NNPC) pipeline networks. Results obtained guarantee detection in at least two deployed nodes with a minimum localisation accuracy of 90%. Additionally, we achieved approximately 77% and 26% reduction in energy consumption compared to a pessimistic strategy and a globalised heuristic approach, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.