Aerial platforms are expected to deliver enhanced and seamless connectivity in the fifth generation (5G) wireless networks and beyond (B5G). This is generally achievable by supporting advanced onboard communication features embedded in heavy and energy-intensive equipment. Alternatively, reconfigurable smart surfaces (RSS), which smartly exploit/recycle signal reflections in the environment, are increasingly being recognized as a new wireless communication paradigm to improve communication links. In fact, their reduced cost, low power use, light weight, and flexible deployment make them an attractive candidate for integration with 5G/B5G technologies. In this article, we discuss comprehensive approaches to the integration of RSS in aerial platforms. First, we present a review of RSS technology, its operations and types of communication. Next, we describe how RSS can be used in aerial platforms, and we propose a control architecture workflow. Then, several potential use cases are presented and discussed. Finally, associated research challenges are identified.
In this paper, we propose a framework design for wireless sensor networks based on multiple unmanned aerial vehicles (UAVs). Specifically, we aim to minimize deployment and operational costs, with respect to budget and power constraints. To this end, we first optimize the number and locations of cluster heads (CHs) guaranteeing data collection from all sensors. Then, to minimize the data collection flight time, we optimize the number and trajectories of UAVs. Accordingly, we distinguish two trajectory approaches: 1) where a UAV hovers exactly above the visited CH; and 2) where a UAV hovers within a range of the CH. The results of this include guidelines for data collection design. The characteristics of sensor nodes' K-means clustering are then discussed. Next, we illustrate the performance of optimal and heuristic solutions for trajectory planning. The genetic algorithm is shown to be near-optimal with only 3.5% degradation. The impacts of the trajectory approach, environment, and UAVs' altitude are investigated. Finally, fairness of UAVs trajectories is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.