Purpose The purpose of this paper is to find the impact of various design variables on the composite shaft, and also the effect of newly developed resin (NDR) on the strength of the fibers of the composite shaft. Design/methodology/approach The Taguchi method is used to optimize the design variables. Also, GRG approach is used to validate the result. Findings NDR improves the bonding strength of fiber than the epoxy resin. With the grey relational analysis (GRA) method, the initial setting (A1B4C4D1) was having grey relational grade 0.957. It was enhanced by using a new optimum combination (A2B2C4D2) to 0.965. It indicates that there is an enhancement in the grade by 0.829 percent. Thus, using the GRA approach of analysis, design variables have been successfully optimized to achieve improved dynamic properties of hybrid composite shaft. Originality/value The findings of this research are helping to optimize the design variables for the composite shaft. Also, the NDR gives the good bonding strength of carbon/glass fibers in dynamic loading condition than the epoxy resin.
PurposeIt is seen that little amount of work on optimization of mechanical properties taking into consideration the combined effect of design variables such as stacking angle, stacking sequence, different resins and thickness of composite laminates has been carried out. The focus of this research work is on the optimization of the design variables like stacking angle, stacking sequence, different resins and thickness of composite laminates which affect the mechanical properties of hybrid composites. For this purpose, the Taguchi technique and the method of gray relational analysis (GRA) are used to identify the optimum combination of design variables. In this case, the effect of the abovementioned design variables, particularly of the newly developed resin (NDR) on mechanical properties of hybrid composites has been investigated.Design/methodology/approachThe Taguchi method is used for design of experiments and with gray relational grade (GRG) approach, the optimization is done.FindingsFrom the experimental analysis and optimization study, it was seen that the NDR gives excellent bonding strength of fibers resulting in enhanced mechanical properties of hybrid composite laminates. With the GRA method, the initial setting (A3B2C4D2) was having GRG 0.866. It was increased by using a new optimum combination (A2B2C4D1) to 0.878. It means that there is an increment in the grade by 1.366%. Therefore, using the GRA approach of analysis, design variables have been successfully optimized to achieve enhanced mechanical properties of hybrid composite laminates.Originality/valueThis is an original research work.
Purpose The purpose of this paper is to analyze the significance of disparate design variables on the mechanical properties of the composite laminate. Four design variables such as stacking sequence, stacking angle, types of resins and thickness of laminate have been chosen to analyze the impact on mechanical properties of the composite laminate. The detailed investigation is carried out to analyze the effect of a carbon layer in stacking sequence and investigate the impact of various resins on the fastening strength of fibers, stacking angles of the fibers and the thickness of the laminate. Design/methodology/approach The Taguchi approach has been adopted to detect the most significant design variable for optimum mechanical properties of the hybrid composite laminate. For this intend, L16 orthogonal array has been composed in statistical software Minitab 17. To investigate an effect of design variables on mechanical properties, signal to noise ratio plots were developed in Minitab. The numerical analysis was done by using the analysis of variance. Findings The single parameter optimization gives the optimal combination A1B1C4D2 (i.e. stacking sequence C/G/G/G, stacking angle is 00, the type of resin is newly developed resin [NDR] and laminate thickness is 0.3 cm) for tensile strength; A4B2C4D2 (i.e. stacking sequence G/G/G/C, stacking angle is 450, the type of resin is NDR and laminate thickness is 0.3 cm) for shear strength; and A2B3C4D2 (i.e. stacking sequence G/C/G/G, stacking angle is 900, the type of resin is NDR and thickness is 0.3 cm) for flexural strength. The types of resins and stacking angles are the most significant design variables on the mechanical properties of the composite laminate. Originality/value The novelty in this study is the development of new resin called NDR from polyethylene and polyurea group. The comparative study was carried out between NDR and three conventional resins (i.e. polyester, vinyl ester and epoxy). The NDR gives higher fastening strength to the fibers. Field emission scanning electron microscope images illustrate the better fastening ability of NDR compared with epoxy. The NDR provides an excellent strengthening effect on the RCC beam structure along with carbon fiber (Figure 2).
The overall objective of this paper is to design and analyze a composite drive shaft for power transmission applications. A one-piece drive shaft for rear wheel drive automobile was designed optimally using E-Glass/Epoxy and High modulus (HM) Carbon/Epoxy composites. In this paper an Analytical and ANSYS Software has been successfully applied to minimize the weight of shaft which is subjected to the constraints such as torque transmission, Static Structural capacities. The results of Analytical Analysis are used to perform Torsional Buckling analysis using ANSYS software. The results show the stacking sequence and fiber angle orientation of shaft strongly affects Buckling strength of shaft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.