Microgravity, as a different environment, has been shown to affect plant growth and development (Sievers et al. 1996;Sack 1997). In the present study, effects of slow clinorotation (2 rpm) on growth and chlorophyll content in rice (variety: PRH-10) seedlings were investigated. Rice seeds were clinorotated continuously for 3, 5 and 7 days under ambient conditions. Root and shoot lengths and weights of rice seedlings were measured on the third, fifth and seventh day. Chlorophyll was extracted using N, N-Dimethylformamide (DMF). Absorption and fluorescence spectra of chlorophyll were recorded. Chlorophyll a, chlorophyll b and total chlorophyll contents were calculated from absorption spectra using Arnon's method. Results showed an increase in root and shoot lengths in clinorotated samples. Similar results were obtained for root and shoot weights. Absorption spectra of chlorophyll showed no shift in the absorption peaks. Chlorophyll content was increased in clinorotated samples as compared to the controls. Interestingly, the difference between chlorophyll content in control and clinorotated samples decreased as the number of days of clinorotation increased. Chlorophyll a/b ratio was lowered in clinorotated samples as compared to the controls. These results suggest that slow clinorotation (2 rpm) affects plant growth and chlorophyll content in rice seedlings.
Abstract.Wear is an irreversible phenomenon. Processes such as mutual sliding and rolling between materials involve entropy generation. These processes are monotonic with respect to time. The concept of entropy generation is further quantified using Degradation Entropy Generation theorem formulated by Michael D. Bryant. The sliding-wear model can be extrapolated to different instances in order to further provide a potential analysis of machine prognostics as well as system and process reliability for various processes besides even mere mechanical processes. In other words, using the concept of 'entropy generation' and wear, one can quantify the reliability of a system with respect to time using a thermodynamic variable, which is the basis of this paper. Thus in the present investigation, a unique attempt has been made to establish correlation between entropy-wear-reliability which can be useful technique in preventive maintenance.
Gravity is the fundamental force that may have operated during the evolution of life on Earth. It is thus important to understand as to what the effects of gravity are on cellular life. The studies related to effect of microgravity on cells may provide greater insights in understanding of how the physical force of gravity shaped life on Earth. The present study focuses on a unique group of organisms called the Haloarchaea, which are known for their extreme resistance to survive in stress-induced environments. The aim of the present investigation was to study the effect of simulated microgravity on physiological response of extremely halophilic archaeon, Haloarcula argentinensis RR10, under slow clinorotation. The growth kinetics of the archaeon in microgravity was studied using the Baryani model and the viable and apoptotic cells were assessed using propidium iodide fluorescent microscopic studies. The physiological mechanism of adaptation was activation of ‘salt-in’ strategy by intracellular sequestration of sodium ions as detected by EDAX. The organism upregulated the production of ribosomal proteins in simulated microgravity as evidenced by Matrix-assisted laser desorption ionization Time of flight–Mass Spectrophotometry. Simulated microgravity altered the antibiotic susceptibility of the haloarchaeon and it developed resistance to Augmentin, Norfloxacin, Tobramycin and Cefoperazone, rendering it a multidrug resistant strain. The presence of antibiotic efflux pump was detected in the haloarchaeon and it also enhanced production of protective carotenoid pigment in simulated microgravity. The present study is presumably the first report of physiological response of H. argentinensis RR10 in microgravity simulated under slow clinorotation.
Numerous studies have been carried out to investigate the hypergravity effect on plants, where seedlings (4-5 days old) were continuously exposed and grown under hypergravity condition. Here, we have used a novel 'shortterm hypergravity exposure experimental method' where imbibed caryopses (instead of seedlings) were exposed to higher g values ranging from 500 g to 2500 g for a short interval time of 10 minutes and post short-term hypergravity treated caryopses were grown under 1 g conditions for five days. Changing patterns in caryopsis germination and growth, along with various photosynthetic and biochemical parameters were studied. Results revealed the significant inhibition of caryopsis germination and growth in shortterm hypergravity treated seeds over control. Photosynthesis parameters such as chlorophyll content, rate of photosynthesis (P N ), transpiration rate (Evap) and stomatal conductance (Gs), along with intracellular CO 2 concentration (C int ) were found to be affected significantly in 5 days old seedlings exposed to short-term hypergravity treatment. In order to investigate the cause of observed inhibition, we examined the α-amylase activity and antioxidative enzyme activities. α-amylase activity was found to be inhibited, along with the reduction of sugars necessary for germination and earlier growth in short-term hypergravity treated caryopses. The activities of antioxidant enzymes such as catalase and guaiacol peroxidase were increased in short-term hypergravity treated caryopses, suggesting that caryopses might have experienced oxidative stress upon short-term hypergravity exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.