This paper discusses the effectiveness of the third-generation (Gen3) Production Logging Tool (PLT) technology which incorporates the use of co-located digital sensors for simultaneous acquisition of flow data. Case studies are provided which demonstrate that this technology is a step-change in the application of digitalization to a down-hole sensor platform which provides the most accurate characterization of the flow condition at each depth surveyed. The resulting data allows for much improved processing which is also described. The probabilistic interpretive model used in the processing has been updated to incorporate this and future developments in PLT architecture. Planning, execution, and analysis of data for the wells is described in detail. Due to the significantly shorter configuration of Gen3 tools, safety at the wellsite is enhanced by allowing for a much-simplified surface rig-up. One well was logged in surface readout (SRO) mode while data in the other two were recorded in the downhole tool's memory for retrieval at the surface at the end of operations. This flexibility in logging modes optimizes operations by addressing the needs of the operation teams. Three Deepwater Gulf of Mexico producers logged with the Gen3 PLT are described. In each case, a clear path forward is provided for optimal management of the reservoirs through effective production management. The first generation (Gen1) of PLT provided a single discrete measurement for each sensor along the tool assembly's length, resulting in long tool assemblies and measurements taken at different points along the flow path. This approach had several drawbacks: long toolstrings, point sensors only provided a measurement at a single point in the cross-section of the flow, and measurements were not acquired simultaneously at each depth logged. The second generation (Gen2) of PLT was an improvement as sensors were arranged as an array enabling multiple measurements to be made at a single depth but were still long and not all were optimally arranged to capture data in the path of flow. The Gen3 PLT is one-tenth the length of the Gen1 versions and roughly one-third of the shortest Gen2 tools. Digitization allows for direct measurement of flow conditions and rapid interpretation of results. In multi-phase flow and deviated wells, the co-location of sensors in a spatial geometry provides the optimal information with which to create a fully accurate picture of the downhole flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.