Adipocytes have been suggested to be immunologically active, but their role in host defense is unclear. We observed rapid proliferation of preadipocytes and expansion of the dermal fat layer after infection of the skin by Staphylococcus aureus. Impaired adipogenesis resulted in increased infection as seen in Zfp423nur12 mice or in mice given inhibitors of peroxisome proliferator–activated receptor γ. This host defense function was mediated through the production of cathelicidin antimicrobial peptide from adipocytes because cathelicidin expression was decreased by inhibition of adipogenesis, and adipocytes from Camp−/− mice lost the capacity to inhibit bacterial growth. Together, these findings show that the production of an antimicrobial peptide by adipocytes is an important element for protection against S. aureus infection of the skin.
Age-associated insulin resistance (IR) and obesity-associated IR are two physiologically distinct forms of adult onset diabetes. While macrophage-driven inflammation is a core driver of obesity-associated IR1–6, the underlying mechanisms of the obesity-independent yet highly prevalent age-associated IR7 are largely unexplored. Comparative adipo-immune profiling (AIP) reveals that fat-resident regulatory T cells, termed fTregs, accumulate in adipose tissue as a function of age, but not obesity. Supporting the existence of two distinct mechanisms underlying IR, mice deficient in fTregs are protected against age-associated IR, yet remain susceptible to obesity-associated IR and metabolic disease. In contrast, selective depletion of fTregs via anti-ST2 antibody treatment increases adipose tissue insulin sensitivity. These findings establish that distinct immune cell populations within adipose tissue underlie aging- and obesity-associated IR and implicate fTregs as adipo-immune drivers and potential therapeutic targets in the treatment of age-associated IR.
Acute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro. Acute exposure to EV decreases macrophage and neutrophil antimicrobial function. Inhalation of EV alters immunomodulating cytokines in the airways of mice. Inhalation of EV leads to increased markers of inflammation in BAL and serum. Staphylococcus aureus become more virulent when exposed to EV.
T o date, hundreds of thousands of deaths have been attributed to coronavirus disease 2019 (COVID-19) 1. Millions of infections by SARS-CoV-2, the virus responsible for COVID-19, have been reported, although its full extent has yet to be determined owing to limited testing 2. Government interventions to slow viral spread have disrupted daily life and economic activity for billions of people. Strategies to ease restraints on human mobility and interaction without provoking a major resurgence of transmission and mortality will depend on accurate estimates of population levels of infection and immunity 3. Current testing for the virus largely depends on labor-intensive molecular techniques 4. Individuals with positive molecular tests represent only a small fraction of all infections, given limited deployment and the brief time window when real-time (RT)-PCR testing has the highest sensitivity 5-7. The proportion of undocumented cases in the original epidemic focus was estimated to be as high as 86% 8 , and asymptomatic infections are suspected to play a substantial role in transmission 9-14. Widely available, reliable antibody detection assays would enable more accurate estimates of SARS-CoV-2 prevalence and incidence. On February 4, 2020, the Secretary of the US Department of Health and Human Services issued an emergency use authorization (EUA) for the diagnosis of SARS-CoV-2 15 , allowing nucleic acid detection and immunoassay tests to be offered based on manufacturer-reported data without formal US Food and Drug Administration (FDA) clearance 16. In response, dozens of companies began to market laboratory-based immunoassays and point-of-care (POC) tests. Rigorous, comparative performance data are crucial to inform clinical care and public health responses.
Background SARS-CoV-2 infection can be detected indirectly by measuring the host immune response. For some viruses, antibody concentrations correlate with host protection and viral neutralization, but in rare cases, anti-viral antibodies can promote disease progression. Elucidation of the kinetics and magnitude of the SARS-CoV-2 antibody response is essential to understand the pathogenesis of COVID-19 and identify potential therapeutic targets. Methods Sera (n=533) from patients with RT-PCR confirmed COVID-19 (n=94 with acute infections and n=59 convalescent patients) were tested using a high-throughput quantitative IgM and IgG assay that detects antibodies to the spike protein receptor binding domain and nucleocapsid protein. Individual and serial samples covered the time of initial diagnosis, during the disease course, and following recovery. We evaluated antibody kinetics and correlation between magnitude of the response and disease severity. Results Patterns of SARS-CoV-2 antibody production varied considerably. Among 52 patients with 3 or more serial specimens, 44 (84.6%) and 42 (80.8%) had observed IgM and IgG seroconversion at a median of 8 and 10 days, respectively. Compared to those with milder disease, peak measurements were significantly higher for patients admitted to the intensive care unit for all time intervals between 6 and 20 days for IgM, and all intervals after 5 days for IgG. Conclusions High sensitivity assays with a robust dynamic range provide a comprehensive picture of host antibody response to SARS-CoV-2. IgM and IgG responses were significantly higher in patients with severe than mild disease. These differences may affect strategies for seroprevalence studies, therapeutics and vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.