We perform linear stability analysis of an interface separating two immiscible, inviscid, quiescent fluids subject to a time-periodic body force. In a generalised, orthogonal coordinate system, the time-dependent amplitude of interfacial perturbations, in the form of standing waves, is shown to be governed by a generalised Mathieu equation. For zero forcing, the Mathieu equation reduces to a (generalised) simple harmonic oscillator equation. The generalised Mathieu equation is shown to govern Faraday waves on four time-periodic base states. We use this equation to demonstrate that Faraday waves and instabilities can arise on an axially unbounded, cylindrical capillary fluid filament subject to radial, time-periodic body force. The stability chart for solutions to the Mathieu equation is obtained through numerical Floquet analysis. For small values of perturbation and forcing amplitude, results obtained from direct numerical simulations (DNS) of the incompressible Euler equation (with surface tension) show very good agreement with theoretical predictions. Linear theory predicts that unstable Rayleigh–Plateau modes can be stabilised through forcing. This prediction is borne out by DNS results at early times. Nonlinearity produces higher wavenumbers, some of which can be linearly unstable due to forcing and thus eventually destabilise the filament. We study axisymmetric as well as three-dimensional perturbations through DNS. For large forcing amplitude, localised sheet-like structures emanate from the filament, suffering subsequent fragmentation and breakup. Systematic parametric studies are conducted in a non-dimensional space of five parameters and comparison with linear theory is provided in each case. Our generalised analysis provides a framework for understanding free and (parametrically) forced capillary oscillations on quiescent base states of varying geometrical configurations.
We demonstrate dynamic stabilisation of axisymmetric Fourier modes susceptible to the classical Rayleigh-Plateau (RP) instability on a liquid cylinder by subjecting it to a radial oscillatory body force. Viscosity is found to play a crucial role in this stabilisation. Linear stability predictions are obtained via Floquet analysis demonstrating that RP unstable modes can be stabilised using radial forcing. We also solve the linearised, viscous initial-value problem for free-surface deformation obtaining an equation governing the amplitude of a three-dimensional Fourier mode. This equation generalises the Mathieu equation governing Faraday waves on a cylinder derived earlier in Patankar et al. (2018), is non-local in time and represents the cylindrical analogue of its Cartesian counterpart (Beyer & Friedrich 1995). The memory term in this equation is physically interpreted and it is shown that for highly viscous fluids, its contribution can be sizeable. Predictions from the numerical solution to this equation demonstrates RP mode stabilisation upto several hundred forcing cycles and is in excellent agreement with numerical simulations of the incompressible, Navier-Stokes equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.