Chrysene is a high molecular weight (HMW), polycyclic aromatic hydrocarbon (PAH) known for its recalcitrance and carcinogenic properties and sparsely soluble (0.003 mg/L) in aqueous medium. Due to these refractory properties, bioavailability of chrysene is very low and therefore is persistence in the environment escaping the metabolism by microorganisms. However, few bacterial and fungal strains are reported to degrade chrysene, but with lower efficiency, requiring additional/extraneous carbon sources (co-substrates) for it’s complete mineralization. In this study, development, enrichment and characterization of bacterial consortium ASDC, consisting of Rhodococcus sp., ASDC1; Bacillus sp. ASDC2; and Burkholderia sp. ASDC3 were reported. Chrysene was utilized as a sole source of carbon and energy by the consortium, having maximum degradation rate of 1.5 mg/L/day and maximum growth rate of 0.125/h, under optimized conditions of pH 7.0, 37°C under aeration of 150 rpm on gyrating shaking. Chrysene degradation was unaffected in presence of other PAHs like pyrene, fluoranthene, naphthalene, phenanthrene, benzene, toluene and xylene, individually as well as in mixture. The results revealed that peptone, ammonium nitrate, sodium succinate have enhanced the chrysene degradation rate during first 24 h of experimentation, which was later on inhibited with increase in incubation time. The chrysene degradation was inhibited by mercury even at lower concentration (1 mM). The results also revealed that SDS has enhanced its degradation by 5.2-fold for initial 24 h of growth, but with increasing in the incubation period, it decreases by 1.2-fold on 7th day of experimentation. The HPLC studies suggested that chrysene was degraded through phthalic acid pathway by the consortium ASDC and the stoichiometric measurements indicated the complete mineralization of chrysene. The flask scale results were validated at simulated microcosm models, where enriched consortium ASDC exhibited maximum degradation (96%) in polluted, non-sterile soil sediment, indicating that consortial strains along with indigenous metabolism showed synergistic metabolism for degradation of chrysene. Thus, the above study revealed the useful enrichment of bacterial community for synergistic degradation of PAHs (chrysene) which could be further exploited for in situ remediation of PAH contaminated sites.
Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant compounds due to their high hydrophobicity and tendency to partition in organic phase of soils. Pyrene is a high-molecular weight PAH, which has human health concerns. In the present study, a bacterial consortium, PBR, was developed from a long-term polluted site, viz., Amlakhadi, Ankleshwar, Gujarat, for effective degradation of pyrene. The consortium effectively metabolized pyrene as a sole source of carbon and energy. The consortium comprised three bacterial species, Pseudomonas sp. ASDP1, Burkholderia sp. ASDP2, and Rhodococcus sp. ASDP3. The maximum growth rate of consortium was 0.060/h and the maximum pyrene degradation rate was 16 mg/l/day. The organic and inorganic nutrients along with different surfactants did not affect pyrene degradation, but degradation rate moderately increased in the presence of sodium succinate. The significant characteristic of the consortium was that it possessed an ability to degrade six other hydrocarbons, both independently and simultaneously at 37 °C, in BHM (pH 7.0) under shaking conditions (150 rpm) and it showed resistance towards mercury at 10 mM concentration. Phthalic acid as one of the intermediates during pyrene degradation was detected through high-performance liquid chromatography (HPLC). The efficiency of consortium for pyrene degradation was validated in simulated microcosms’ study, which indicated that 99% of pyrene was metabolized by the consortium under ambient conditions.Electronic supplementary materialThe online version of this article (doi:10.1007/s13205-017-0598-8) contains supplementary material, which is available to authorized users.
In this study, a bacterial consortium ASDF was developed, capable of degrading fluoranthene (a non-alternant poly-aromatic hydrocarbon). It comprised of three bacterial strains: Pseudomonas sp. ASDF1, Burkholderia sp. ASDF2 and Mycobacterium sp. ASDF3 capable of degrading 100 mg/L of fluoranthene under experimentally defined and optimum conditions (37 °C, pH 7.0, 150 rpm) within 7 days. Consortium had metabolized fluoranthene as sole source of carbon and energy with maximum degradation rate of 0.52 mg/L/h and growth rate of 0.054/h. Fluoranthene degradation is an aerobic process, therefore with increasing the gyratory shaking from 50 to 150 rpm, degradation was concurrently enhanced by 7.1-fold. The synthetic surfactants SDS and CTAB had antagonistic effect on fluoranthene degradation (decreased up to 2.8-fold). The proficiency of consortium was assessed for its inherent ability to degrade seven other hydrocarbons both individually as well as in mixture. The degradation profile was studied using HPLC and the detection of two degraded intermediates (salicylic acid and derivatives of phthalic acid) suggested that fluoranthene degradation might have occurred via ortho-and meta-cleavage pathways. The competency of consortium was further validated through simulated microcosm studies, which showed 96% degradation of fluoranthene in soil ecosystem under the ambient conditions. Hence, the study suggested that the consortium ASDF has an inherent potential for its wide applicability in bioremediation of hydrocarbon-contaminated sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.