In this study, manganese porphyrin was grafted on the surface of graphene oxide nanosheets via covalent bonding to produce a heterogeneous catalyst. The prepared nanocomposite was characterized using X-ray diffraction, UVevis spectroscopy, scanning electron microscopy, Fourier transform infrared, and thermogravimetric analysis. Atomic absorption spectroscopy was also used to determine the amount of the loaded catalyst. The catalytic efficiency of the immobilized Mn-porphyrin was investigated for the aerobic oxidation of alkenes and saturated alkanes in acetone under mild reaction conditions. The prepared heterogenized catalyst displays superior catalytic performance as compared to the homogeneous catalyst. Moreover, the excellent turnover number (more than 31,767) achieved for the oxidation of styrene indicates the high longevity of the supported catalyst. The catalyst structure is preserved well after the oxidation reaction and is simply reused at least five times, without any significant loss of the catalytic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.