Near-threshold (NT) FFs, which operate from a supply voltage close to the transistor threshold voltage, are considered as a good alternative for portable applications, where low power dissipation with reasonable performance is the main demand. This paper presents an improved model for delay/energy estimation of the NT FFs. The proposed model, based on the EKV current and alpha power law models, improves the existing model by taking into account the rise and fall times of all internal nodes of the FF. The fitting parameters that are required for the model development were extracted from measurements of a test chip that was fabricated in a standard CMOS low power 80nm process. We show how the proposed model can be utilized for NT Master-Slave FF delay and energy estimation, showing an improvement of up to x100 in the precision of calculations compared to the existing model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.