We present a scheme for imaging of neutral atoms to the nanoscale with a pulsed magnetic lens and show its viability through numerical calculations. This scheme achieves focal lengths on the order of several centimeters and focal spots of less than 10 nm. With these results, it is possible to create sub-10 nm structures on surfaces in a parallel and time-efficient manner. When used with metastable noble gas atoms, and in combination with electron spectroscopy, this scheme can create a chemically sensitive microscope which can probe surfaces on the nanometer scale.
Abstract-Conventional large-core multimode fibers (MMFs) are preferred for use in short to medium haul optical fiber links, owing to their tolerance to misalignment and low deployment costs; however, data rates through MMFs are limited by modal dispersion. Digital signal processing with multiple-input multiple-output (MIMO) techniques has offered promising solutions to overcome the dispersion limitations of MMFs, but the impact of the geometry of laser and detector arrays on the achievable data rate is not established. To this end, we use a field-propagation-based model to gauge the impact the geometry of lasers and detectors can have on the achievable ergodic and outage rates of incoherent MIMO-MMF links. Laser and detector array geometries were investigated using a grid-based method to optimize the positions of lasers and detectors for a 1 km MIMO-MMF link. Simulations reveal that systems with appropriately designed laser/detector geometries could improve the achievable rate over the fiber by more than 200% over random laser/detector arrays. The grid-based search technique, however, is limited due to high computational requirements for fine grids. As an alternative, we developed a suboptimal "greedy" selection approach to design detector geometries, which produces detector geometries that attain more than 90% of the rate obtained with an exhaustive search, while requiring less than 0.2% of the computation. The low computation requirements and high performance of the greedy selection approach also motivate the use of dynamically reconfigurable detector arrays to achieve high data rates with reduced signal processing complexity. Methods are also presented for clustering detector elements to obtain more consolidated segmented detectors with better fill factors, while still offering significant data rate benefits. The achievable ergodic rate using these systems is verified to be close to the link's ergodic capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.