Summary
During the resolution phase of inflammation apoptotic leukocytes are efferocytosed by macrophages in a nonphlogistic fashion that results in diminished responses to bacterial moieties and production of anti-inflammatory cytokines. Complement receptor 3 (CR3) and pro-resolving lipid mediators promote the engulfment of apoptotic leukocytes by macrophages. Here, we present evidence for the emergence of pro-resolving, CD11blow macrophages in vivo during the resolution of murine peritonitis. These macrophages are distinct from the majority of peritoneal macrophages in terms of their functional protein expression profile, as well as pro-resolving properties, such as apoptotic leukocyte engulfment, indifference to TLR ligands, and emigration to lymphoid organs. Notably, we also found macrophages convert from the CD11bhigh to the CD11blow phenotype upon interaction with apoptotic cells ex vivo. In addition, we found that the pro-resolving lipid mediators resolvin (Rv) E1 and RvD1, and the glucocorticoid dexamethasone (Dex) regulated pro-resolving macrophage functions in vivo. This regulation culminated in a novel pro-resolving function, namely reducing the apoptotic leukocyte ingestion requirement for CD11blow macrophage generation. These new phenotype and molecular pathway markers define the new satiated-macrophage. Thus, we suggest that satisfying-efferocytosis generates CD11blow macrophages that are essential for complete non-phlogistic containment of inflammatory agents and the termination of acute inflammation.
The uptake of apoptotic polymorphonuclear cells (PMN) by macrophages is critical for timely resolution of inflammation. High-burden uptake of apoptotic cells is associated with loss of phagocytosis in resolution phase macrophages. Here, using a transcriptomic analysis of macrophage subsets, we show that non-phagocytic resolution phase macrophages express a distinct IFN-β-related gene signature in mice. We also report elevated levels of IFN-β in peritoneal and broncho-alveolar exudates in mice during the resolution of peritonitis and pneumonia, respectively. Elimination of endogenous IFN-β impairs, whereas treatment with exogenous IFN-β enhances, bacterial clearance, PMN apoptosis, efferocytosis and macrophage reprogramming. STAT3 signalling in response to IFN-β promotes apoptosis of human PMNs. Finally, uptake of apoptotic cells promotes loss of phagocytic capacity in macrophages alongside decreased surface expression of efferocytic receptors in vivo. Collectively, these results identify IFN-β produced by resolution phase macrophages as an effector cytokine in resolving bacterial inflammation.
IFN-γ-inducible protein 10 (IP-10) is a CXC chemokine that is thought to manifest a proinflammatory role because it stimulates the directional migration of activated T cells, particularly Th1 cells. It is an open question whether this chemokine is also directly involved in T cell polarization. We show here that during the course of adjuvant-induced arthritis the immune system mounts a notable Ab titer against self-IP-10. Upon the administration of naked DNA encoding IP-10, this titer rapidly accelerates to provide protective immunity. Self-specific Ab to IP-10 developed in protected animals, as well as neutralizing Ab to IP-10 that we have generated in rabbits, could inhibit leukocyte migration, alter the in vivo and in vitro Th1/Th2 balance toward low IFN-γ, low TNF-α, high IL-4-producing T cells, and adoptively transfer disease suppression. This not only demonstrates the pivotal role of this chemokine in T cell polarization during experimentally induced arthritis but also suggests a practical way to interfere in the regulation of disease to provide protective immunity. From the basic science perspective, this study challenges the paradigm of in vivo redundancy. After all, we did not neutralize the activity of other chemokines that bind CXCR3 (i.e., macrophage-induced gene and IFN-inducible T cell α chemoattractant) and yet significantly blocked not only adjuvant-induced arthritis but also the in vivo competence to mount delayed-type hypersensitivity.
The cytokine transcription profiles of developing T helper 1 and T helper 2 cells are imprinted and induced appropriately following stimulation of differentiated cells. Epigenetic regulation combines several mechanisms to ensure the inheritance of transcriptional programs. We found that the expression of the polycomb group proteins, whose role in maintaining gene silencing is well documented, was induced during development in both T helper lineages. Nevertheless, the polycomb proteins, YY1, Mel-18, Ring1A, Ezh2, and Eed, bound to the Il4 and Ifng loci in a differential pattern. In contrast to the prevailing dogma, the binding activity of the polycomb proteins in differentiated T helper cells was associated with cytokine transcription. The polycomb proteins bound to the cytokine genes under resting conditions, and their binding was induced dynamically following stimulation. The recruitment of the polycomb proteins Mel-18 and Ezh2 to the cytokine promoters was inhibited in the presence of cyclosporine A, suggesting the involvement of NFAT. Considering their binding pattern at the cytokine genes and their known function in higher order folding of regulatory elements, we propose a model whereby the polycomb proteins, in some contexts, positively regulate gene expression by mediating long-distance chromosomal interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.