Logistic regression is one of the most fundamental methods for modeling the probability of a binary outcome based on a collection of covariates. However, the classical formulation of logistic regression relies on the independent sampling assumption, which is often violated when the outcomes interact through an underlying network structure, such as over a temporal/spatial domain or on a social network. This necessitates the development of models that can simultaneously handle both the network 'peer-effect' (arising from neighborhood interactions) and the effect of (possibly) high-dimensional covariates. In this paper, we develop a framework for incorporating such dependencies in a high-dimensional logistic regression model by introducing a quadratic interaction term, as in the Ising model, designed to capture the pairwise interactions from the underlying network. The resulting model can also be viewed as an Ising model, where the node-dependent external fields linearly encode the high-dimensional covariates. We propose a penalized maximum pseudo-likelihood method for estimating the network peer-effect and the effect of the covariates (the regression coefficients), which, in addition to handling the high-dimensionality of the parameters, conveniently avoids the computational intractability of the maximum likelihood approach. Consequently, our method is computational efficient and, under various standard regularity conditions, we show that the corresponding estimate attains the classical high-dimensional rate of consistency. In particular, our results imply that even under network dependence it is possible to consistently estimate the model parameters at the same rate as in classical (independent) logistic regression, when the true parameter is sparse and the underlying network is not too dense. As a consequence of the general results, we derive the rates of consistency of our proposed estimator for various natural graph ensembles, such as bounded degree graphs, sparse Erdős-Rényi random graphs, and stochastic block models.
Recently, high dimensional vector auto-regressive models (VAR), have attracted a lot of interest, due to novel applications in the health, engineering and social sciences. The presence of temporal dependence poses additional challenges to the theory of penalized estimation techniques widely used in the analysis of their iid counterparts. However, recent work (e.g., Michailidis, 2015, Kock andCallot, 2015]) has established optimal consistency of 1 -LASSO regularized estimates applied to models involving high dimensional stable Gaussian processes. The only price paid for temporal dependence is an extra multiplicative factor that equals 1 for independent and identically distributed (iid) data. Further, [Wong et al., 2020] extended these results to heavy tailed VARs that exhibit "β-mixing" dependence, but the rates rates are sub-optimal, while the extra factor is intractable.This paper improves these results in two important directions: (i) We establish optimal consistency rates and corresponding finite sample bounds for the underlying model parameters that match those for iid data, modulo a price for temporal dependence, that is easy to interpret and equals 1 for iid data. (ii) We incorporate more general penalties in estimation (which are not decomposable unlike the 1 norm) to induce general sparsity patterns. The key technical tool employed is a novel, easy-to-use concentration bound for heavy tailed linear processes, that do not rely on "mixing" notions and give tighter bounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.