To characterize the genetic basis of facial features in Latin Americans, we performed a genome-wide association study (GWAS) of more than 6000 individuals using 59 landmark-based measurements from two-dimensional profile photographs and ~9,000,000 genotyped or imputed single-nucleotide polymorphisms. We detected significant association of 32 traits with at least 1 (and up to 6) of 32 different genomic regions, more than doubling the number of robustly associated face morphology loci reported until now (from 11 to 23). These GWAS hits are strongly enriched in regulatory sequences active specifically during craniofacial development. The associated region in 1p12 includes a tract of archaic adaptive introgression, with a Denisovan haplotype common in Native Americans affecting particularly lip thickness. Among the nine previously unidentified face morphology loci we identified is the VPS13B gene region, and we show that variants in this region also affect midfacial morphology in mice.
Background Genome-wide association studies (GWASs) have identified genes influencing skin ageing and mole count in Europeans, but little is known about the relevance of these (or other genes) in non-Europeans. Objectives To conduct a GWAS for facial skin ageing and mole count in adults < 40 years old, of mixed European, Native American and African ancestry, recruited in Latin America. Methods Skin ageing and mole count scores were obtained from facial photographs of over 6000 individuals. After quality control checks, three wrinkling traits and mole count were retained for genetic analyses. DNA samples were genotyped with Illumina's HumanOmniExpress chip. Association testing was performed on around 8 703 729 single-nucleotide polymorphisms (SNPs) across the autosomal genome.
We report an evaluation of prediction accuracy for eye, hair and skin pigmentation based on genomic and phenotypic data for over 6,500 admixed Latin Americans (the CANDELA dataset). We examined the impact on prediction accuracy of three main factors: (i) The methods of prediction, including classical statistical methods and machine learning approaches, (ii) The inclusion of non-genetic predictors, continental genetic ancestry and pigmentation SNPs in the prediction models, and (iii) Compared two sets of pigmentation SNPs: the commonly-used HIrisPlex-S set (developed in Europeans) and novel SNP sets we defined here based on genome-wide association results in the CANDELA sample. We find that Random Forest or regression are globally the best performing methods. Although continental genetic ancestry has substantial power for prediction of pigmentation in Latin Americans, the inclusion of pigmentation SNPs increases prediction accuracy considerably, particularly for skin color. For hair and eye color, HIrisPlex-S has a similar performance to the CANDELA-specific prediction SNP sets. However, for skin pigmentation the performance of HIrisPlex-S is markedly lower than the SNP set defined here, including predictions in an independent dataset of Native American data. These results reflect the relatively high variation in hair and eye color among Europeans for whom HIrisPlex-S was developed, whereas their variation in skin pigmentation is comparatively lower. Furthermore, we show that the dataset used in the training of prediction models strongly impacts on the portability of these models across Europeans and Native Americans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.