In Pseudomonas putida U two different pathways (Pea, Ped) are required for the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid. The 2-phenylethylamine pathway (PeaABCDEFGHR) catalyses the transport of this amine, its deamination to phenylacetaldehyde by a quinohaemoprotein amine dehydrogenase and the oxidation of this compound through a reaction catalysed by a phenylacetaldehyde dehydrogenase. Another catabolic route (PedS(1)R(1)ABCS(2)R(2)DEFGHI) is needed for the uptake of 2-phenylethanol and for its oxidation to phenylacetic acid via phenylacetaldehyde. This implies the participation of two different two-component signal-transducing systems, two quinoprotein alcohol dehydrogenases, a cytochrome c, a periplasmic binding protein, an aldehyde dehydrogenase, a pentapeptide repeat protein and an ABC efflux system. Additionally, two accessory sets of elements (PqqABCDEF and CcmABCDEFGHI) are necessary for the operation of the main pathways (Pea and Ped). PqqABCDEF is required for the biosynthesis of pyrroloquinoline quinone (PQQ), a prosthetic group of certain alcohol dehydrogenases that transfers electrons to an independent cytochrome c; whereas CcmABCDEFGHI is required for cytochrome c maturation. Our data show that the degradation of phenylethylamine and phenylethanol in P. putida U is quite different from that reported in Escherichia coli, and they demonstrate that PeaABCDEFGHR and PedS(1)R(1)ABCS(2)R(2)DEFGHI are two upper routes belonging to the phenylacetyl-CoA catabolon.
Expansion of hematopoietic stem cells (HSCs) for therapeutic purposes has been a “holy grail” in the field for many years. Ex vivo expansion of HSCs can help to overcome material shortage for transplantation purposes and genetic modification protocols. In this review, we summarize improved understanding in blood development, the effect of niche and conservative signaling pathways on HSCs in mice and humans, and also advances in ex vivo culturing protocols of human HSCs with cytokines or small molecule compounds. Different expansion protocols have been tested in clinical trials. However, an optimal condition for ex vivo expansion of human HSCs still has not been found yet. Translating and implementing new findings from basic research (for instance by using genetic modification of human HSCs) into clinical protocols is crucial to improve ex vivo expansion and eventually boost stem cell gene therapy.
SummaryDegradation of tyramine and dopamine by Pseudomonas putida U involves the participation of twenty one proteins organized in two coupled catabolic pathways, Tyn (tynABFEC tynG tynR tynD, 12 338 bp) and Hpa (hpaR hpaBC hpaHI hpaX hpaG1G2EDF hpaA hpaY, 12 722 bp). The Tyn pathway catalyses the conversion of tyramine and dopamine into 4-hydroxyphenylacetic acid (4HPA) and 3,4-dihydroxyphenylacetic acid (3,4HPA) respectively. Together, the Tyn and Hpa pathways constitute a complex catabolic unit (the 3,4HPA catabolon) in which 3,4HPA is the central intermediate. The genes encoding Tyn proteins are organized in four consecutive transcriptional units (tynABFEC, tynG, tynR and tynD), whereas those encoding Hpa proteins constitute consecutive operons (hpaBC, hpaG1G2EDF, hpaX, hpaHI) and three independent units (hpaA, hpaR and hpaY). Genetic engineering approaches were used to clone tyn and hpa genes and then express them, either individually or in tandem, in plasmids and/or bacterial chromosomes, resulting in recombinant bacterial strains able to eliminate tyramine and dopamine from different media. These results enlarge our biochemical and genetic knowledge of the microbial catabolic routes involved in the degradation of aromatic bioamines. Furthermore, they provide potent biotechnological tools to be used in food processing and fermentation as well as new strategies that could be used for pharmacological and gene therapeutic applications in the near future.
SummaryEnvironmental microbes oscillate between feast and famine and need to carefully manage utilization, storage and conversion of reserve products to exploitable sources of carbon and energy. Polyhydroxyalkanoates (PHAs) are storage polymers that serve bacteria as sources of food materials under physiological conditions of carbon demand. In order to obtain insights into the role of PHA depolymerase (PhaZ) and its relationship to a PHA polymerase (PhaC2) in the carbon management activity of Pseudomonas putida strain U, we created a polymerase hyperexpression strain and a depolymerase knockout mutant of this strain, and examined their synthesis of PHA and expression of their PHA genes. This study revealed that hyperexpression of PhaC2 led to the accumulation of higher amounts of PHA (44%wt) than in the wild-type strain (24%wt) after 24 h of cultivation, which then returned to wild-type levels by 48 h, as a result of elevated depolymerization. The phaZ mutant, however, accumulated higher levels of PHA than the parental strain (62%wt), which were maintained for at least 96 h. Transcriptional analysis of the pha cluster by RT-PCR revealed that PHA operon proteins, including depolymerase, are expressed from the beginning of the growth phase. Hyperexpression of the PhaC2 polymerase was accompanied by an increase in the expression of the PhaZ depolymerase and a decrease in expression of another PHA polymerase, PhaC1. This suggests tight regulatory coupling of PHA polymerase and depolymerase activities that act in synergy, and in concert with other PHA proteins, to provide dynamic PHA granule synthesis and remodelling that rapidly and sensitively respond to changes in availability of carbon and the physiological-metabolic needs of the cell, to ensure optimal carbon resource management.
Pseudomonas aeruginosa is a ubiquitously occurring environmental bacterium and opportunistic pathogen responsible for various acute and chronic infections. Obviously, anaerobic energy generation via denitrification contributes to its ecological success. To investigate the structural basis for the interconnection of the denitrification machinery to other essential cellular processes, we have sought to identify the protein interaction partners of the denitrification enzyme nitrite reductase NirS in the periplasm. We employed NirS as an affinity-purifiable bait to identify interacting proteins in vivo. Results obtained revealed that both the flagellar structural protein FliC and the protein chaperone DnaK form a complex with NirS in the periplasm. The interacting domains of NirS and FliC were tentatively identified. The NirS-interacting stretch of amino acids lies within its cytochrome c domain. Motility assays and ultrastructure analyses revealed that a nirS mutant was defective in the formation of flagella and correspondingly in swimming motility. In contrast, the fliC mutant revealed an intact denitrification pathway. However, deletion of the nirF gene, coding for a heme d 1 biosynthetic enzyme, which leads to catalytically inactive NirS, did not abolish swimming ability. This pointed to a structural function for the NirS protein. FliC and NirS were found colocalized with DnaK at the cell surface of P. aeruginosa. A function of the detected periplasmic NirS-DnaK-FliC complex in flagellum formation and motility was concluded and discussed. IMPORTANCEPhysiological functions in Gram-negative bacteria are connected with the cellular compartment of the periplasm and its membranes. Central enzymatic steps of anaerobic energy generation and the motility mediated by flagellar activity use these cellular structures in addition to multiple other processes. Almost nothing is known about the protein network functionally connecting these processes in the periplasm. Here, we demonstrate the existence of a ternary complex consisting of the denitrifying enzyme NirS, the chaperone DnaK, and the flagellar protein FliC in the periplasm of the pathogenic bacterium P. aeruginosa. The dependence of flagellum formation and motility on the presence of an intact NirS was shown, structurally connecting both cellular processes, which are important for biofilm formation and pathogenicity of the bacterium. P seudomonas aeruginosa is a metabolically versatile bacterium inhabiting multiple environmental niches (1). It is known for its highly efficient growth in the absence of oxygen. Fast anaerobic growth is mediated via the utilization of different N-oxides as electron acceptors in the respiratory chains of denitrification (2). Anaerobic respiratory growth via denitrification also sustains biofilm formation on environmental surfaces, in the mucus in the lung of cystic fibrosis patients, on the epithelium of the urinary tract infected individuals, and in burn wounds (3).The periplasm, the cellular compartment bounded by the cytoplasmi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.