The extensive use of nanometal-based products increases the chance of their release into aquatic environments, raising the question whether they can pose a risk to aquatic biota and the associated ecological processes. Aquatic microbes, namely fungi and bacteria, play a key role in forested streams by decomposing plant litter from terrestrial vegetation. Here, we investigated the effects of nanocopper oxide and nanosilver on leaf litter decomposition by aquatic microbes, and the results were compared with the impacts of their ionic precursors. Alder leaves were immersed in a stream of Northwest Portugal to allow microbial colonization before being exposed in microcosms to increased nominal concentrations of nanometals (CuO, 100, 200 and 500 ppm; Ag, 100 and 300 ppm) and ionic metals (Cu(2+) in CuCl(2), 10, 20 and 30 ppm; Ag(+) in AgNO(3), 5 and 20 ppm) for 21 days. Results showed that rates of leaf decomposition decreased with exposure to nano- and ionic metals. Nano- and ionic metals inhibited bacterial biomass (from 68.6% to 96.5% of control) more than fungal biomass (from 28.5% to 82.9% of control). The exposure to increased concentrations of nano- and ionic metals decreased fungal sporulation rates from 91.0% to 99.4%. These effects were accompanied by shifts in the structure of fungal and bacterial communities based on DNA fingerprints and fungal spore morphology. The impacts of metal nanoparticles on leaf decomposition by aquatic microbes were less pronounced compared to their ionic forms, despite metal ions were applied at one order of magnitude lower concentrations. Overall, results indicate that the increased release of nanometals to the environment may affect aquatic microbial communities with impacts on organic matter decomposition in streams.
Summary
Climate change scenarios predict an increase in global temperature and alterations in precipitation regimes, which may change nutrient concentrations in waterbodies. In forested streams, decomposition of allochthonous organic matter is a key ecosystem process that is affected by the quality of plant litter entering the streams and several environmental factors, including nutrient concentrations, whose interactive effects are difficult to predict.
We examined the concomitant effects of increased temperature, concentration of inorganic nutrients in stream water and litter quality on leaf decomposition and activity of microbial decomposers. Leaves of alder (Alnus glutinosa) and oak (Quercus robur), representative of high and low initial N content, respectively, were immersed in a stream (NW Portugal) to allow microbial colonisation and then were exposed in microcosms to increasing concentrations of N‐NO3 (0.09–5 mg L−1; six levels) and P‐PO4 (0.003–0.3 mg L−1; three levels) alone or in all possible combinations. One set of microcosms was kept at 12 °C, a temperature typically found in Iberian streams in autumn, and the other set at 18 °C to simulate a warming scenario.
Nitrogen immobilisation was higher in alder than in oak leaves, and increased with temperature and N concentration in stream water for both leaf species.
Leaf decomposition, fungal biomass accrual and reproduction were not affected by P concentration, but overall microbial activity increased asymptotically (Michaelis–Menten kinetics) with N concentration. Increased temperature led to an increase in maximum activity of fungal decomposers and to a decrease in N concentration needed to achieve it, especially in alder leaves.
Under the predicted warming scenario, leaf decomposition may become faster in streams with lower nutrient levels, especially those receiving high‐quality leaf litter.
1. The hyporheic zone of a permanent first-order stream was divided into a treatment and a control section using a 1 m deep sheet-metal barrier. During a 4-month pre-treatment period, water temperatures in two transects of the two sections were not different. Upon heating, the water temperature in the treatment transect increased by an average of 4.3°C over values in the control transect. 2. Eleven bimonthly core samples were taken from a treatment and a control transect, and recovered CPOM was classified as twigs, wood, grass, roots, cedar and deciduous leaves. 3. In both transects, twigs were the most common and deciduous leaves the least common substrates. The number of leaf fragments declined significantly in the heat-treated transect. 4. Diversity and frequencies of occurrence of aquatic hyphomycetes were highest on leaves and lowest on grass and wood. On leaves, their frequency of occurrence was higher in control than in treatment samples. 5. Preliminary results with amplified and cloned 18S DNA sequences revealed many fungal taxa with high affinities to Basidiomycota, particularly to Limnoperdon incarnatum. 6. By itself, higher water temperature due to global warming is likely to lower the availability of substrates for, and therefore the occurrence of, aquatic hyphomycetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.