Background Human relaxin‐2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia‐reperfusion injury. B7‐33, a synthetically designed peptide analogous to B‐chain of relaxin‐2, invokes signaling at relaxin family peptide receptor 1 (cognate receptor for relaxin‐2) by preferentially phosphorylating the mitogen‐activated protein kinase extracellular signal‐regulated kinase 1/2. We sought to investigate the effects of B7‐33 treatment post ischemia‐reperfusion injury in mice. Methods and Results Adult male CD 1 mice were subjected to ischemia‐reperfusion via ligation of left anterior descending artery for 30 minutes, followed by 24 hours or 7 days of reperfusion. Echocardiography was performed to assess cardiac function, and cardiac tissue was stained to determine infarct size at 24 hours. B7‐33 significantly reduced infarct size (21.99% versus 45.32%; P =0.02) and preserved fractional shortening (29% versus 23%; P =0.02) compared with vehicle. The difference in fractional shortening further increased at 7 days post myocardial infarction (29% versus 20% for B7‐33 and vehicle groups, respectively). In vitro , primary cardiomyocytes were isolated from adult hearts and subjected to simulated ischemia‐reperfusion injury (simulated ischemia reoxygenation). B7‐33 (50 and 100 nmol/L) improved cell survival and reduced the expression of GRP 78 (glucose regulated protein), an endoplasmic reticulum stress marker. Subsequently, B7‐33 (100 nmol/L) reduced tunicamycin (2.5 μg/mL) induced upregulation of GRP 78 in an extracellular signal‐regulated kinase 1/2–dependent manner. Conclusions B7‐33 confers acute cardioprotection and limits myocardial infarction–related adverse remodeling in mice by attenuating cardiomyocyte death and endoplasmic reticulum stress as well as preserving cardiac function.
Background: Doxorubicin (DOX) is a first-line anticancer drug for the treatment of triple negative breast cancer (TNBC). However, its dose-dependent delayed and progressive cardiotoxicity limits its therapeutic application. NovoMedix (NM922) is a novel dual mTOR inhibitor/AMPK activator that was shown to attenuate adverse cardiac remodeling and fibrosis in a pressure-overload mouse model of heart failure. We investigated whether combination therapy with DOX and NM922 exhibits synergistic chemotherapeutic effect while mitigating DOX cardiotoxicity. Methods & Results: Tumors were generated in athymic female BALB/cAnNCr-nu/nu mice by implanting MDA-MB-231 cells into the rear right flank. Mice with tumors (volume≈200mm 3 ) were randomized into 6 groups and treated as follows: 1) Control (n=10); 2) DOX (3 mg/kg; i.p. twice weekly, total 15 mg/kg; n=10); 3) NM922 (25 mg/kg/d; p.o. n=5); 4) DOX+NM922 (25 mg/kg/d; p.o. n=15); 5) NM922 (100 mg/kg/d; p.o. n=5); 6) DOX+NM922 (100 mg/kg/d; p.o. n=15). Tumor size, body weight and cardiac function were assessed throughout the study. DOX alone, and to a significant extent when in combination with NM922 (25 mg/kg) reduced tumor growth compared to control. NM922 (100 mg/kg) with/without DOX significantly reduced tumor growth as compared to DOX alone (Fig A). DOX caused reduction in body weight and survival of tumor-bearing mice. NM922 did not prevent DOX-induced cachexia, but significantly improved survival in DOX-treated mice (Fig B). DOX treatment caused a significant decline in left ventricular ejection fraction compared to control over 3 weeks, which was ameliorated with NM922 (100 mg/kg) co-treatment (Fig C&D). Conclusion: Our results suggest that NM922 may potentiate the chemotherapeutic efficacy of DOX in TNBC, while mitigating its cardiotoxicity. Moreover, these findings advocate the potential efficacy of utilizing lower DOX dosages when combined with NM922, which would have significant clinical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.