Deep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds. We show that systematic addition of choline chloride leads to microscopic heterogeneities that alter the primary structural relaxation in glycerol and ethylene glycol and result in new dynamic modes that are strongly correlated to the macroscopic properties of the DES formed.
As renewable energy is rapidly integrated into the grid, the challenge has become storing intermittent renewable electricity. Technologies including flow batteries and CO 2 conversion to dense energy carriers are promising storage options for renewable electricity. To achieve this technological advancement, the development of next generation electrolyte materials that can increase the energy density of flow batteries and combine CO 2 capture and conversion is desired. Liquidlike nanoparticle organic hybrid materials (NOHMs) composed of an inorganic core with a tethered polymeric canopy (e.g., polyetheramine (HPE)) have a capability to bind chemical species of interest including CO 2 and redox-active species. In this study, the unique response of NOHM-I-HPE-based electrolytes to salt addition was investigated, including the effects on solution viscosity and structural configurations of the polymeric canopy, impacting transport behaviors. The addition of 0.1 M NaCl drastically lowered the viscosity of NOHM-based electrolytes by up to 90%, reduced the hydrodynamic diameter of NOHM-I-HPE, and increased its self-diffusion coefficient, while the ionic strength did not alter the behaviors of untethered HPE. This study is the first to fundamentally discern the changes in polymer configurations of NOHMs induced by salt addition and provides a comprehensive understanding of the effect of ionic stimulus on their bulk transport properties and local dynamics. These insights could be ultimately employed to tailor transport properties for a range of electrochemical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.