of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
Pathogenic microbes, such as bacteria and viruses, can spread quickly via contaminated surfaces. Most of these pathogenic microorganisms can survive on surfaces for a long time. Touching these surfaces can lead to the transmission of the microorganisms to the human body and cause serious illnesses. ZrN-Cu coatings containing different amounts of Cu were deposited using an industrial PVD system, and their ability to inhibit bacteria and inactivate the SARS-CoV-2 virus was tested. Microstructural studies showed the formation of two distinct ZrN and Cu phases when Cu content was sufficiently high. Hardness and elastic modulus were inversely proportional to the Cu content. The coatings showed outstanding bactericidal properties against Escherichia coli and Pseudomonas aeruginosa, especially when Cu content was more than 12 at.% and exposure time was longer than 40 min. The coatings, however, did not exhibit any significant virucidal properties. Good mechanical properties, along with excellent antibacterial effects, make these coatings suitable for use as self-sanitizing surfaces on objects that people regularly touch and that are prone to bacterial contamination. Their use would thus allow for only minimal transmission or multiplication of bacteria, and the treated surface would not serve as another source of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.