In this paper, a new two‐dimensional fractional polynomials based on the orthonormal Bernstein polynomials has been introduced to provide an approximate solution of nonlinear fractional partial Volterra integro‐differential equations. For this aim, the fractional‐order orthogonal Bernstein polynomials (FOBPs) are constructed, and its operational matrices of integration, fractional‐order integration, and derivative in the Caputo sense and product operational matrix are derived. These operational matrices are utilized to reduce the under study problem to a nonlinear system of algebraic equations. Using the approximation of FOBPs, the convergence analysis and error estimate associated to the proposed problem have been investigated. Finally, several examples are included to clarify the validity, efficiency, and applicability of the proposed technique via FOBPs approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.