Purpose Because of its increased absorptance in fluid and reduced heat loss, direct absorption nanofluid (DANF) is receiving intense interest as an efficient way to harvest solar energy. This work aims to investigate, for the first time, the application of DANF in parabolic trough collectors (PTC), a promising collector for solar thermal systems. Design/methodology/approach A representative flow and heat transfer study of different fluids in a straight tube is conducted, and the basic energy equation and radiative transfer equations are numerically solved to obtain the fluid temperature distribution and energy conversion efficiency. Ethylene glycol (EG) and different concentrations of (i.e., 0.1-0.6 per cent) multi-wall carbon nanotubes (MWCNT) in EG are used as sample fluids. Four cases are studied for a traditional PTC (i.e., using metal tube) and a direct absorption PTC (i.e., using transparent tube) including a bare tube, a tube with an air-filled glass envelope and a tube with vacuumed glass envelop. The numerical results are verified by an experimental study using a copper-glass absorber tube, which reveals the good potential of DANFs. Findings Compared with a conventional PTC, using DANF shows an increase of 8.6 per cent and 6.5 K, respectively, in thermal efficiency and outlet temperature difference at a volume fraction (0.5 per cent) of nanoparticles. The results also show that the improvement in solar efficiency increases with increasing particle concentrations, and the vacuum insulated case has the highest efficiency. Originality/value In all previous studies, an important section was missing as the effect of photons on the direct solar absorption trough collector, which is considered in this study. This paper proposes a new concept of using direct solar absorption nanofluids for concentrated solar collectors and analyzes the performance of both absorptance and transmittance efficiency considerations. To reveal the potential of the new concept, an analytical model based on energy balance is developed, and two case studies are performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.