Water is stored in reservoirs for various purposes, including regular distribution, flood control, hydropower generation, and meeting the environmental demands of downstream habitats and ecosystems. However, these objectives are often in conflict with each other and make the operation of reservoirs a complex task, particularly during flood periods. An accurate forecast of reservoir inflows is required to evaluate water releases from a reservoir seeking to provide safe space for capturing high flows without having to resort to hazardous and damaging releases. This study aims to improve the informed decisions for reservoirs management and water prerelease before a flood occurs by means of a method for forecasting reservoirs inflow. The forecasting method applies 1- and 2-month time-lag patterns with several Machine Learning (ML) algorithms, namely Support Vector Machine (SVM), Artificial Neural Network (ANN), Regression Tree (RT), and Genetic Programming (GP). The proposed method is applied to evaluate the performance of the algorithms in forecasting inflows into the Dez, Karkheh, and Gotvand reservoirs located in Iran during the flood of 2019. Results show that RT, with an average error of 0.43% in forecasting the largest reservoirs inflows in 2019, is superior to the other algorithms, with the Dez and Karkheh reservoir inflows forecasts obtained with the 2-month time-lag pattern, and the Gotvand reservoir inflow forecasts obtained with the 1-month time-lag pattern featuring the best forecasting accuracy. The proposed method exhibits accurate inflow forecasting using SVM and RT. The development of accurate flood-forecasting capability is valuable to reservoir operators and decision-makers who must deal with streamflow forecasts in their quest to reduce flood damages.
Water is a vital element that plays a central role in human life. This study assesses the status of indicators based on water resources availability relying on hydro-social analysis. The assessment involves countries exhibiting decreasing trends in per capita renewable water during 2005–2017. Africa, America, Asia, Europe, and Oceania encompass respectively 48, 35, 43, 20, and 5 countries with distinct climatic conditions. Four hydro-social indicators associated with rural society, urban society, technology and communication, and knowledge were estimated with soft-computing methods [i.e., artificial neural networks, adaptive neuro-fuzzy inference system, and gene expression programming (GEP)] for the world’s continents. The GEP model’s performance was the best among the computing methods in estimating hydro-social indicators for all the world’s continents based on statistical criteria [correlation coefficient (R), root mean square error (RMSE), and mean absolute error]. The values of RMSE for GEP models for the ratio of rural to urban population (PRUP), population density, number of internet users and education index parameters equaled (0.084, 0.029, 0.178, 0.135), (0.197, 0.056, 0.152, 0.163), (0.151, 0.036, 0.123, 0.210), (0.182, 0.039, 0.148, 0.204) and (0.141, 0.030, 0.226, 0.082) for Africa, America, Asia, Europe and Oceania, respectively. Scalable equations for hydro-social indicators are developed with applicability at variable spatial and temporal scales worldwide. This paper’s results show the patterns of association between social parameters and water resources vary across continents. This study’s findings contribute to improving water-resources planning and management considering hydro-social indicators.
No abstract
Today, the concept of security manifests itself in a number of forms in most scientific, social, environmental, and political issues. One of the most essential and prominent types of security issue faced today is water security, which has introduced a complex and new concept to the literature of today's world. Not only has the current water crisis in most parts of the world increased the risk of military conflicts between countries, but the value of safe water will become even more apparent in the coming decades, which is why water security will have a special importance in the modern world. Water security is a concept that has attracted particular attention in recent decades from various dimensions. Estimates show that by 2100, the planet's population will increase from the current 7.7 billion (7.7 × 109) to 11.2 billion, and that providing adequate safe water for such a population is one of the significant challenges facing humans – because the world's freshwater resources are not just for individual consumption and for the environment, but they are also vital for the agricultural, energy, industrial, and transportation sectors. Therefore, it should be noted that the existing world water resources, both in terms of quantity and quality, are at a critical stage. However, the severity of this problem varies from region to region, with regions such as the Middle East and South Africa at greater risk of water scarcity. Water security is therefore a vital issue for all of us. This chapter first outlines the concept of water security from different perspectives, emphasizing that water security is a multifaceted issue, before finally examining solutions and policies to address to the challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.