Background Due to the limited number of studies with long term follow-up of patients undergoing Percutaneous Coronary Intervention (PCI), we investigated the occurrence of Major Adverse Cardiac and Cerebrovascular Events (MACCE) during 10 years of follow-up after coronary angioplasty using Random Survival Forest (RSF) and Cox proportional hazards models. Methods The current retrospective cohort study was performed on 220 patients (69 women and 151 men) undergoing coronary angioplasty from March 2009 to March 2012 in Farchshian Medical Center in Hamadan city, Iran. Survival time (month) as the response variable was considered from the date of angioplasty to the main endpoint or the end of the follow-up period (September 2019). To identify the factors influencing the occurrence of MACCE, the performance of Cox and RSF models were investigated in terms of C index, Integrated Brier Score (IBS) and prediction error criteria. Results Ninety-six patients (43.7%) experienced MACCE by the end of the follow-up period, and the median survival time was estimated to be 98 months. Survival decreased from 99% during the first year to 39% at 10 years' follow-up. By applying the Cox model, the predictors were identified as follows: age (HR = 1.03, 95% CI 1.01–1.05), diabetes (HR = 2.17, 95% CI 1.29–3.66), smoking (HR = 2.41, 95% CI 1.46–3.98), and stent length (HR = 1.74, 95% CI 1.11–2.75). The predictive performance was slightly better by the RSF model (IBS of 0.124 vs. 0.135, C index of 0.648 vs. 0.626 and out-of-bag error rate of 0.352 vs. 0.374 for RSF). In addition to age, diabetes, smoking, and stent length, RSF also included coronary artery disease (acute or chronic) and hyperlipidemia as the most important variables. Conclusion Machine-learning prediction models such as RSF showed better performance than the Cox proportional hazards model for the prediction of MACCE during long-term follow-up after PCI.
Background This study aimed to use the hybrid method based on an adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) to predict the long term occurrence of major adverse cardiac and cerebrovascular events (MACCE) of patients underwent percutaneous coronary intervention (PCI) with stent implantation. Method This retrospective cohort study included a total of 220 patients (69 women and 151 men) who underwent PCI in Ekbatan medical center in Hamadan city, Iran, from March 2009 to March 2012. The occurrence and non-occurrence of MACCE, (including death, CABG, stroke, repeat revascularization) were considered as a binary outcome. The predictive performance of ANFIS model for predicting MACCE was compared with ANFIS-PSO and logistic regression. Results During ten years of follow-up, ninety-six patients (43.6%) experienced the MACCE event. By applying multivariate logistic regression, the traditional predictors such as age (OR = 1.05, 95%CI: 1.02–1.09), smoking (OR = 3.53, 95%CI: 1.61–7.75), diabetes (OR = 2.17, 95%CI: 2.05–16.20) and stent length (OR = 3.12, 95%CI: 1.48–6.57) was significantly predicable to MACCE. The ANFIS-PSO model had higher accuracy (89%) compared to the ANFIS (81%) and logistic regression (72%) in the prediction of MACCE. Conclusion The predictive performance of ANFIS-PSO is more efficient than the other models in the prediction of MACCE. It is recommended to use this model for intelligent monitoring, classification of high-risk patients and allocation of necessary medical and health resources based on the needs of these patients. However, the clinical value of these findings should be tested in a larger dataset.
Background: This study aimed to use the hybrid method based on an adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) to predict the occurrence of major adverse cardiac and cerebrovascular events (MACCE) of patients underwent angioplasty.Method: This is a retrospective cohort study comprised a total of 220 patients (69 women and 151 men) who underwent coronary angioplasty in Ekbatan medical center in Hamadan city, Iran between March 2009 until March 2012. The occurrence and non-occurrence of MACCE, (including death, CABG, stroke, repeat revascularization) were considered as a binary outcome. The performance of ANFIS models for predicting MACCE was compared with ANFIS-PSO and logistic regression.Results: Ninety-six patients (43.6%) experienced the MACCE event after ten years of follow-up. In multivariate analysis based on logistic regression model, variables such as age (OR = 1.05), smoking (OR = 3.53), diabetes (OR = 2.17) and stent length (OR = 3.12) had a significant effect on MACCE occurrence. Comparing the prediction performance of the models showed that the ANFIS-PSO model had higher accuracy (89%) compared to the ANFIS (81%) and logistic regression (72%) in the prediction of MACCE.Conclusion: The performance of ANFIS-PSO has a minimum error and maximum accuracy compared to other models in the prediction of MACCE. Application of this model is recommended for intelligent monitoring of these patients, the classification of high-risk patients and the allocation of necessary medical and health resources based on the needs of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.