Purpose: A blood test for early detection of colorectal cancer is a valuable tool for testing asymptomatic individuals and reducing colorectal cancer-related mortality. The objective of this study was to develop and validate a novel blood test able to differentiate patients with colorectal cancer and adenomatous polyps (AP) from individuals with a negative colonoscopy.Experimental Design: A case-control, multicenter clinical study was designed to collect blood samples from patients referred for colonoscopy or surgery. Predictive algorithms were developed on 75 controls, 61 large AP (LAP) !1 cm, and 45 colorectal cancer cases and independently validated on 74 controls, 42 LAP, and 52 colorectal cancer cases (23 stages I-II) as well as on 245 cases including other colorectal findings and diseases other than colorectal cancer. The test is based on a 29-gene panel expressed in peripheral blood mononuclear cells alone or in combination with established plasma tumor markers.Results: The 29-gene algorithm detected colorectal cancer and LAP with a sensitivity of 79.5% and 55.4%, respectively, with 90.0% specificity. Combination with the protein tumor markers carcinoembryonic antigen (CEA) and CYFRA21-2 resulted in a specificity increase (92.2%) with a sensitivity for colorectal cancer and LAP detection of 78.1% and 52.3%, respectively.Conclusions: We report the validation of a novel blood test, Colox Ò , for the detection of colorectal cancer and LAP based on a 29-gene panel and the CEA and CYFRA21-1 plasma biomarkers. The performance and convenience of this routine blood test provide physicians a useful tool to test average-risk individuals unwilling to undergo upfront colonoscopy.
Although immune checkpoint inhibitors improve median overall survival in patients with metastatic urothelial cancer (mUC), only a minority of patients benefit from it. Early blood-based response biomarkers may provide a reliable way to assess response weeks before imaging is available, enabling an early switch to other therapies. We conducted an exploratory study aimed at the identification of early markers of response to anti-PD-1 in patients with mUC. Whole blood RNA sequencing and phenotyping of peripheral blood mononuclear cells were performed on samples of 26 patients obtained before and after 2 to 6 weeks of anti-PD-1. Between baseline and on-treatment samples of patients with clinical benefit, 51 differentially expressed genes (DEGs) were identified, of which 37 were upregulated during treatment. Among the upregulated genes was PDCD1, the gene encoding PD-1. STRING network analysis revealed a cluster of five interconnected DEGs which were all involved in DNA replication or cell cycle regulation. We hypothesized that the upregulation of DNA replication/cell cycle genes is a result of T cell proliferation and we were able to detect an increase in Ki-67+ CD8+ T cells in patients with clinical benefit (median increase: 1.65%, range −0.63 to 7.06%, p = 0.012). In patients without clinical benefit, no DEGs were identified and no increase in Ki-67+ CD8+ T cells was observed. In conclusion, whole blood transcriptome profiling identified early changes in DNA replication and cell cycle regulation genes as markers of clinical benefit to anti-PD-1 in patients with urothelial cancer. Although promising, our findings require further validation before implementation in the clinic.
<p>Positive rate of the predictive MGMC and MGMC-P algorithms applied to non per-protocol cases. This table provides the positive rate of the predictive MGMC and MGMC-P algorithms applied to non per-protocol cases</p>
<p>Gene expression analysis of the 29 biomarkers according to age and sex in the 3 main study groups. Two sided t-test was used to test genes differentially expressed between subjects younger or older than 65 years or between males and females. Statistical significance threshold was set at 0.05.</p>
<p>Positive rate of the MGMC and MGMC-P algorithms for non-colorectal cancers. This table provides the positive rate of the MGMC and MGMC-P algorithms for non-colorectal cancers</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.