Background: One of the most prevalent methods in noninvasive blood pressure (BP) measurement with cuff is oscillometric, which has two different types of deflation, including linear and step deflation. With this approach, in addition to designing a novel algorithm by the step deflation method, a sample of its module was constructed and validated during clinical tests in different hospitals. Method: In this study, by controlling the valve, the pressure would be deflated through optimized steps. By real-time processing on the obtained signal from the pressure sensor, pulses in each step would be extracted. After that, in offline mode, mean arterial pressure is estimated based on curve fitting. Result: A BP simulator, various modules, and an auditory method were used to validate the algorithm and its results. During clinical tests, 80 people (men and women), 11 dialysis patients, and 69 non-dialysis (healthy or with other diseases) in the age range of 17–85 years participated. Conclusion: The obtained results compared with the BP simulator are in the standard range according to the international medical standards of the British Hypertension Society (BHS) and the US Association for the Advancement of Medical Instrumentation (AAMI), which are the global standard of comparison in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.