Two-dimensional perovskites, in which inorganic layers are stabilized by organic spacer molecules, are attracting increasing attention as a more robust analogue to the conventional three-dimensional metal-halide perovskites. However, reducing the perovskite dimensionality alters their optoelectronic properties dramatically, yielding excited states that are dominated by bound electron-hole pairs known as excitons, rather than by free charge carriers common to their bulk counterparts. Despite the growing interest in two-dimensional perovskites for both light harvesting and light emitting applications, the full impact of the excitonic nature on their optoelectronic properties remains unclear, particularly regarding the spatial dynamics of the excitons within the two-dimensional (2D) plane.Here, we present direct measurements of in-plane exciton transport in single-crystalline layered perovskites. Using time-resolved fluorescence microscopy, we show that excitons undergo an initial fast, intrinsic normal diffusion through the crystalline plane, followed by a transition to a slower subdiffusive regime as excitons get trapped. Interestingly, the early intrinsic exciton diffusivity depends sensitively on the choice of organic spacer. We find a clear correlation between the stiffness of the lattice and the diffusivity, suggesting exciton-phonon interactions to be dominant in determining the spatial dynamics of the excitons in these materials. Our findings provide a clear design strategy to optimize exciton transport in these systems. lead, tin), X is a halide anion (chloride, bromide, iodide), L is a long organic spacer molecule, and n is the number of octahedra that make up the thickness of the inorganic layer. The separation into fewatom thick inorganic layers yields strong quantum and dielectric confinement effects. 38 As a result, the exciton binding energies in 2D perovskites can be as high as several hundreds of meVs, which is around an order of magnitude larger than those found in bulk perovskites. [39][40][41] The excitonic character of the excited state is accompanied by an effective widening of the bandgap, an increase in the oscillator strength, and a narrowing of the emission spectrum. [40][41][42] The strongest confinement effects are observed for n = 1, where the excited state is confined to a single B-X-octahedral layer (see Figure 1a).Light harvesting using 2D perovskites relies on the efficient transport of excitons and their subsequent separation into free charges. 43 This stands in contrast to bulk perovskites in which free charges are generated instantaneously thanks to the small exciton binding energy. 39 Particularly, with excitons being neutral quasi-particles, the charge extraction becomes significantly more challenging as they cannot be guided to the electrodes through an external electric field. 44 Excitons need to diffuse to an interface before the electron and hole can be efficiently separated into free charges. 45 On the other hand, for light emitting applications the spatial displacement is ...
Two-dimensional layered perovskites are attracting increasing attention as more robust analogues to the conventional three-dimensional metal-halide perovskites for both light harvesting and light emitting applications. However, the impact of the reduced dimensionality on the optoelectronic properties remains unclear, particularly regarding the spatial dynamics of the excitonic excited state within the two-dimensional plane. Here, we present direct measurements of exciton transport in single-crystalline layered perovskites. Using transient photoluminescence microscopy, we show that excitons undergo an initial fast diffusion through the crystalline plane, followed by a slower subdiffusive regime as excitons get trapped. Interestingly, the early intrinsic diffusivity depends sensitively on the choice of organic spacer. A clear correlation between lattice stiffness and diffusivity is found, suggesting exciton-phonon interactions to be dominant in the spatial dynamics of the excitons in perovskites, consistent with the formation of exciton-polarons. Our findings provide a clear design strategy to optimize exciton transport in these systems.
Identifying the two-dimensional (2D) topological insulating (TI) state in new materials and its control are crucial aspects towards the development of voltage-controlled spintronic devices with low power dissipation. Members of the 2D transition metal dichalcogenides (TMDCs) have been recently predicted and experimentally reported as a new class of 2D TI materials, but in most cases edge conduction seems fragile and limited to the monolayer phase fabricated on specified substrates. Here, we realize the controlled patterning of the 1T'-phase embedded into the 2H-phase of thin semiconducting molybdenum-disulfide (MoS2) by laser beam irradiation. Integer fractions of the quantum of resistance, the dependence on laser-irradiation conditions, magnetic field, and temperature, as well as the bulk gap observation by scanning tunneling spectroscopy and theoretical calculations indicate the presence of the quantum spin Hall phase in our patterned 1T' phases.Two-dimensional (2D) topological insulting (TI) states have been mainly investigated in HgTe/CdTe or InAs/GaSb quantum well systems (1-3). In the 2D TI state the quantum spin Hall (QSH) effect emerges thanks to the simultaneous presence of a bulk energy gap and gapless helical edge states protected by time-reversal symmetry, namely, opposite and counter-propagating spin states forming a Kramers doublet. Interestingly, 2D TI states were first theoretically predicted for graphene (4-6), but experimentally reported in only few related systems (7-9) such as low-coverage Bi2Te3 nanoparticle-decorated graphene (8). Moreover, control of the QSH phase in graphene-based systems remains a challenge.Recently, a family of atom-thin transition metal dichalcogenides (TMDCs) materials has also been predicted to exhibit the QSHE (10-12), having its origin in the natural band inversion of the 1T' phase (one of the phases of TMDC; see Supplementary Material (SM) 1) and the spin-orbit coupling (SOC)induced band-gap opening. Moreover, the TI state has been experimentally verified in the case of WTe 2 (13-15) thanks to the stability and high-quality of WTe 2 monolayers carefully formed on bilayer graphene/atom-thin hBN. Various signatures of the TI state have been demonstrated in this 2 material (13,15), including the latest observation of a half-integer quantum value of resistance (RQ/2 = h/2e 2 = 12.9 k, where h is Planck's constant and e is the charge on the electron) (14).However, the TI phenomenon in WTe2 is rather sensitive to the substrates, synthesis process, and the chemical environment, making its controlled use in practical applications challenging. Moreover, although the (metastable) 1T' phase can be found or induced in other TMDCs (23,25), nobody has demonstrated the existence of the QSHE in these other TMDCs. The conditions under which helical edge states can exist at the 1T'-2H interfaces is a crucial problem which should be mastered for both TI physics and its applications. Here, we pattern a metallic 1T'-phase (SM 1) embedded into the nontopological and semiconducting 2H p...
The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue toward engineering the properties of quantum materials. Twisted bilayer graphene is a key material in this regard because the superlattice produced by the rotated graphene layers introduces a van Hove singularity and flat bands near the Fermi energy that cause the emergence of numerous correlated phases, including superconductivity. Direct demonstration of electrostatic control of the superlattice bands over a wide energy range has, so far, been critically missing. This work examines the effect of electrical doping on the electronic band structure of twisted bilayer graphene using a back‐gated device architecture for angle‐resolved photoemission measurements with a nano‐focused light spot. A twist angle of 12.2° is selected such that the superlattice Brillouin zone is sufficiently large to enable identification of van Hove singularities and flat band segments in momentum space. The doping dependence of these features is extracted over an energy range of 0.4 eV, expanding the combinations of twist angle and doping where they can be placed at the Fermi energy and thereby induce new correlated electronic phases in twisted bilayer graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.