Microgrid energy systems are one of suitable solutions to the available problems in power systems such as energy losses, and resiliency issues. Local generation by these energy systems can reduce the role of the upstream network, which is a challenge in risky conditions. Also, uncertain behavior of electricity consumers and generating units can make the optimization problems sophisticated. So, uncertainty modeling seems to be necessary. In this paper, in order to model the uncertainty of generation of photovoltaic systems, a scenario-based model is used, while the robust optimization method is used to study the uncertainty of load. Moreover, the stochastic scheduling is performed to model the uncertain nature of renewable generation units. Time-of-use rates of demand response program (DRP) is also utilized to improve the system economic performance in different operating conditions. Studied problem is modeled using a mixed-integer linear programming (MILP). The general algebraic modeling system (GAMS) package is used to solve the proposed problem. A sample microgrid is studied and the results with DRP and without DRP are compared. It is shown that same robustness is achieved with a lower increase in the operation cost using DRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.