The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. Here, we further characterized incubation of nicotine craving in the rat model by determining whether this incubation is observed after adolescent-onset nicotine self-administration. We also used the neuronal activity marker Fos and the Daun02 chemogenetic inactivation procedure to identify cue-activated neuronal ensembles that mediate incubation of nicotine craving. We trained adolescent and adult male rats to self-administer nicotine (2 h/d for 12 d) and assessed cue-induced nicotine seeking in extinction tests (1 h) after 1, 7, 14, or 28 withdrawal days. In both adult and adolescent rats, nicotine seeking in the relapse tests followed an inverted U-shaped curve, with maximal responding on withdrawal day 14. Independent of the withdrawal day, nicotine seeking in the relapse tests was higher in adult than in adolescent rats. Analysis of Fos expression in different brain areas of adolescent and adult rats on withdrawal days 1 and 14 showed time-dependent increases in the number of Fos-positive neurons in central and basolateral amygdala, orbitofrontal cortex, ventral and dorsal medial prefrontal cortex, and nucleus accumbens core and shell. In adult Fos-lacZ transgenic rats, selective inactivation of nicotine-cue-activated Fos neurons in central amygdala, but not orbitofrontal cortex, decreased "incubated" nicotine seeking on withdrawal day 14. Our results demonstrate that incubation of nicotine craving occurs after adolescent-onset nicotine self-administration and that neuronal ensembles in central amygdala play a critical role in this incubation.
Prazosin acts centrally to reduce yohimbine-induced alcohol seeking. The Fos mapping study suggests candidate sites where it may act. Doxazosin is also effective in reducing yohimbine-induced reinstatement. These data provide information on the mechanisms of alpha-1 antagonists on yohimbine-induced alcohol seeking and indicate their further investigation for the treatment of alcoholism.
κ-Opioid receptors (KORs) and their endogenous ligand dynorphin are involved in stress-induced alcohol seeking but the mechanisms involved are largely unknown. We previously showed that systemic injections of the KOR agonist U50,488, which induce stress-like aversive states, reinstate alcohol seeking after extinction of the alcohol-reinforced responding. Here, we used the neuronal activity marker Fos and site-specific injections of the KOR antagonist nor-BNI and U50,488 to study brain mechanisms of U50,488-induced reinstatement of alcohol seeking. We trained male Long-Evans rats to self-administer alcohol (12% w/v) for 23-30 days. After extinction of the alcohol-reinforced responding, we tested the effect of U50,488 (0, 1.25, 2.5, and 5 mg/kg) on reinstatement of alcohol seeking. Next, we correlated regional Fos expression with reinstatement induced by the most effective U50,488 dose (5 mg/kg). Based on the correlational Fos results, we determined the effect of bed nucleus of the stria terminalis (BNST) injections of nor-BNI (4 μg/side) on U50,488-induced reinstatement of alcohol seeking, and reinstatement induced by injections of U50,488 (0, 0.3, 1, and 3 μg/side) into the BNST. U50,488-induced reinstatement of alcohol seeking was associated with increased Fos expression in multiple brain areas, including the BNST, where it was significantly correlated with lever pressing. U50,488-induced reinstatement was blocked by BNST nor-BNI injections, and BNST U50,488 injections partially mimicked the drug's systemic effect on reinstatement. Our data indicate that the BNST is a critical site for U50,488-induced reinstatement of alcohol seeking and suggest that KOR/dynorphin mechanisms in this brain area play a key role in stress-induced alcohol seeking.
Alcohol dependence and stress are associated with relapse to alcohol during abstinence, but the underlying mechanisms are poorly understood. Kappa opioid receptors (KOR) are involved in alcohol reward and in the effects of stress. Previously, in non-dependent rats, we showed that KOR in the bed nucleus of the stria terminalis (BNST) mediate reinstatement of alcohol seeking induced by the selective KOR agonist U50,488. Here, we determine the effects of chronic, intermittent exposure to alcohol vapor on U50,488-induced reinstatement of alcohol seeking. We also study brain mechanisms involved using the neuronal activity marker Fos and phosphorylated p38 MAPK (p-p38), an intracellular messenger implicated in the effects of KOR stimulation. We trained male Long-Evans rats to self-administer alcohol (12% w/v) and exposed them to alcohol vapor (14 h vapor/10 h air) daily for 24 d or to the control condition, extinguished alcohol-reinforced responding and determined the dose response for U50,488-induced reinstatement. We then determined the effects of vapor exposure on U50,488-induced Fos and p-p38 expression. Vaporexposed rats were more sensitive to U50,488-induced reinstatement. U50,488 increased Fos expression in brain areas involved in stress-induced relapse, and Fos activation in the ventral BNST was greater in vapor exposed rats. Vapor exposed rats had increased basal p-p38 expression in the dorsal BNST, LC and NTS. Our findings suggest that changes in the neuronal responses to KOR stimulation in the ventral BNST may be involved in the increased sensitivity to U50,488 accompanying dependence.
Dynorphin (DYN), and its receptor, the kappa opioid receptor (KOR) are involved in drug seeking and relapse but the mechanisms are poorly understood. One hypothesis is that DYN/KOR activation promotes drug seeking through increased impulsivity, because many stimuli that induce DYN release increase impulsivity. Here, we systematically compare the effects of drugs that activate DYN/KOR on performance on the 5-choice serial reaction time task (5-CSRTT), a test of sustained attention and impulsivity. In Experiment 1, we determined the effects of U50,488 (0, 2.5, 5 mg/kg), yohimbine (0, 1.25, 5 mg/kg), and nicotine (0, 0.15, 0.3 mg/kg) on 5-CSRTT performance. In Experiment 2, we determined the effects of alcohol (0, 0.5, 1.0, 1.5 g/kg) on 5-CSRTT performance before and after voluntary, intermittent alcohol exposure. In Experiment 3, we determined the potential role of KOR in the pro-impulsive effects of yohimbine (1.25 mg/kg) and nicotine (0.3 mg/kg) by the prior administration of the KOR antagonist nor-BNI (10 mg/kg). Premature responding, the primary measure of impulsivity, was reduced by U50,488 and alcohol, but these drugs had a general suppressive effect. Yohimbine and nicotine increased premature responding. Yohimbine-, but not nicotine-induced increases in premature responding were blocked by nor-BNI, suggesting that impulsivity induced by yohimbine is KOR dependent. This may suggests a potential role for KOR-mediated increases in impulsivity in yohimbine-induced reinstatement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.