In this work, activated carbon sulfonic acid was prepared from the reaction of activated carbon and chlorosulfonic acid in chloroform at reflux conditions and characterized using X-ray powder diffraction (XRD) spectrum, infra-red (IR) spectrum, field emission scanning electron microscopy (FE-SEM) images and energy dispersive X-ray spectroscopy (EDS). Benzimidazole was prepared in excellent yields through the multicomponent condensation reaction of 1,2-phenylenediamine with aryl aldehydes in the presence of sulfonic acid-functionalized activated carbon (AC-SO3H), as an active catalyst, under solvent-free conditions. According to the optimized variables, the best reaction conditions for preparing benzimidazole were found to be: 0.02 gram of catalyst in solvent-free condition at 30 Min. and at 75 °C. To demonstrate the stability and durability of the catalyst, the yields of five successive runs with recovered catalyst were reported, showing no significant change in the obtained yields. Ultimately, the synthesis of benzimidazoles was achieved using an efficient, simple, environmentally benign, inexpensive and economic approach in the presence of AC-SO3H catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.