For most proteins annotated as enzymes, it is unknown which primary and/or secondary reactions they catalyze. Experimental characterizations of potential substrates are time-consuming and costly. Machine learning predictions could provide an efficient alternative, but are hampered by a lack of information regarding enzyme non-substrates, as available training data comprises mainly positive examples. Here, we present ESP, a general machine-learning model for the prediction of enzyme-substrate pairs with an accuracy of over 91% on independent and diverse test data. ESP can be applied successfully across widely different enzymes and a broad range of metabolites included in the training data, outperforming models designed for individual, well-studied enzyme families. ESP represents enzymes through a modified transformer model, and is trained on data augmented with randomly sampled small molecules assigned as non-substrates. By facilitating easy in silico testing of potential substrates, the ESP web server may support both basic and applied science.
For a comprehensive understanding of metabolism, it is necessary to know all potential substrates for each enzyme encoded in an organism's genome. However, for most proteins annotated as enzymes, it is unknown which primary and/or secondary reactions they catalyze, as experimental characterizations are time-consuming and costly. Machine learning predictions could provide an efficient alternative, but are hampered by a lack of information regarding enzyme non-substrates, as available training data comprises mainly positive examples. Here, we present ESP, a general machine learning model for the prediction of enzyme-substrate pairs, with an accuracy of over 90% on independent and diverse test data. This accuracy was achieved by representing enzymes through a modified transformer model with a trained, task-specific token, and by augmenting the positive training data by randomly sampling small molecules and assigning them as non-substrates. ESP can be applied successfully across widely different enzymes and a broad range of metabolites. It outperforms recently published models designed for individual, well-studied enzyme families, which use much more detailed input data. We implemented a user-friendly web server to predict the substrate scope of arbitrary enzymes, which may support not only basic science, but also the development of pharmaceuticals and bioengineering processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.