Industrial design of Short Fiber Reinforced Composites (SFRC) structures is subject to several compounding and processing steps of optimization. Moreover, these structures are often submitted to fatigue loading. Therefore, SN curves have to be established for each new composite formulation and for several type of microstructure involved in the real component due to processing. While these preliminary characterizations are time and money consuming, this paper propose a new hybrid methodology for fast fatigue life prediction. Moreover, both monotonic and fatigue behavior of SMC composites is essentially determined by local damage propagation. Therefore, the key idea of the proposed approach is to use a Mori and Tanaka based micromechanical model in order to establish an equation of state relating local damage rate to macroscopic residual stiffness rate. The generalization of this relation to fatigue damage multi-scale description leads to the SN curve fast determination of each considered microstructure. Very limited experimental characterization is required in such a way that SN curve could be established in just one day. Comparison between experimental and simulated Whöler curves highlights a very good agreement for several microstructure configurations in the case of a SMC composite material.
Sheet molding compound (SMC) composite has been studied under humid-aging conditions. Diffusion of water within the material, as measured by gravimetry, was found to be in good agreement with the "Langmuir-type" diffusion model developed by Carter and Kibler. In their theory, Carter and Kibler consider the existence of two types of water molecules in the material, «mobile» and «bound». In this study, these two types have been considered separately. Furthermore, Infrared spectroscopy (FTIR) analysis has been performed by decomposition of signals to study the fraction of free (mobile) and hydrogen-bounded water. Thermal analysis and microscopic observations were put forward to explain the two types of water molecules. In this contribution, we found a "bi-phasic" water diffusion. We suggest that the «mobile» water corresponding to the diffusion in the micro-porosities follows a Fickien kinetic, which turns to sigmoidal one at a specific time of immersion τ. Whereas the kinetic of «bound» water, referring to crosslinking and plasticization, follows a sigmoidal kinetic, which turns to Fickien behavior when the overall network is saturated.
The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface viscodamageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.
The majority of fatigue life prediction models which have been proposed for the Short Fiber Reinforced Composite (SFRC) materials have been developed for constant temperature. However, in real situations, SFRC structures are subjected to variable temperature. This study focus on the response of SFRC composites subjected to different sequences (or blocks) under variable temperature conditions. Experientially, this kind of study requires a lot of investment from the point of view of cost and time. In this paper, the results coming from modelling the fatigue life and residual stiffness of short fiber reinforced composites subjected to thermomechanical loadings are reported. In fact, we propose to use a hybrid micromechanical-phenomenological model to quantify the evolution of the local damage rate during each loading block. Indeed, damage accumulation is calculated and cumulated step by step through the calculation of the evolution of a local damage ratio which describes the evolution of micro-cracks density until failure. Life prediction for specimens submitted to a variable temperature loading found to give acceptable results compared to experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.