BackgroundMelanoma patients vaccinated with tumor-associated antigens frequently develop measurable peptide-specific CD8+ T cell responses; however, such responses often do not confer clinical benefit. Understanding why vaccine-elicited responses are beneficial in some patients but not in others will be important to improve targeted cancer immunotherapies.Methods and FindingsWe analyzed peptide-specific CD8+ T cell responses in detail, by generating and characterizing over 200 cytotoxic T lymphocyte clones derived from T cell responses to heteroclitic peptide vaccination, and compared these responses to endogenous anti-tumor T cell responses elicited naturally (a heteroclitic peptide is a modification of a native peptide sequence involving substitution of an amino acid at an anchor residue to enhance the immunogenicity of the peptide). We found that vaccine-elicited T cells are diverse in T cell receptor variable chain beta expression and exhibit a different recognition profile for heteroclitic versus native peptide. In particular, vaccine-elicited T cells respond to native peptide with predominantly low recognition efficiency—a measure of the sensitivity of a T cell to different cognate peptide concentrations for stimulation—and, as a result, are inefficient in tumor lysis. In contrast, endogenous tumor-associated-antigen-specific T cells show a predominantly high recognition efficiency for native peptide and efficiently lyse tumor targets.ConclusionsThese results suggest that factors that shape the peptide-specific T cell repertoire after vaccination may be different from those that affect the endogenous response. Furthermore, our findings suggest that current heteroclitic peptide vaccination protocols drive expansion of peptide-specific T cells with a diverse range of recognition efficiencies, a significant proportion of which are unable to respond to melanoma cells. Therefore, it is critical that the recognition efficiency of vaccine-elicited T cells be measured, with the goal of advancing those modalities that elicit T cells with the greatest potential of tumor reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.