This paper presents a novel 160 Gbps free space optics (FSO) communication system for 6G applications. Polarization division multiplexing (PDM) is integrated with an optical code division multiple access (OCDMA) technique to form a PDM-OCDMA hybrid. There are two polarization states: one is X-polarization generated from adjusting the azimuthal angle of a light source at 0° while the other is Y-polarization which is generated by adjusting the azimuthal angle of a light source at 90°. Each polarization state is used for the transmission of four independent users. Each channel is assigned by permutation vector (PV) codes and carries 20 Gbps data. Four different weather conditions are considered for evaluating the performance of our proposed model. These weather conditions are clear air (CA), foggy conditions (low fog (LF), medium fog (MF), and heavy fog (HF)), dust storms (low dust storm (LD), moderate dust storm (MD), heavy dust storm (HD)), and snowfall (wet snow (WS) and dry snow (DS)). Bit error rate (BER), Q-factors, maximum propagation range, channel capacity, and eye diagrams are used for evaluating the performance of the proposed model. Simulation results assure successful transmission of 160 Gbps overall capacity for eight channels. The longest FSO range is 7 km which occurred under CA while the minimum is achieved under HD, which is 0.112 km due to large attenuation caused by HD. Within fog conditions, the maximum propagation distances are 1.525 km in LF, 1.05 km in MF, and 0.85 km in HF. Likewise, under WS and DS, the proposed system can support transmission distances of 1.15 km and 0.28 km, respectively. All these transmission distances are achieved at BER less than 10−5.
The requirement of high data rate information transmission is rising exponentially for supporting different services including social networking, web streaming, and biomedical sensor data transmission. Such services required high channel bandwidth with secure information transmission and immunity to electromagnetic interference. Radio over free space optics (RoFSO) is witnessed as a promising technological solution to provide high data rate transmission over free space channel. We report on the design of a 2×10 Gb/s-10 GHz RoFSO transmission system using the mode division multiplexing technique and evaluate its transmission performance over varying levels of dust weather conditions. The comparison of non-return to zero (NRZ) and return to zero (RZ) binary digital optical modulation techniques is carried out in the proposed system. It is found that the proposed system using NRZ modulation serves 14.5 km transmission range; however, in the case of RZ modulation, it was restricted to 10 km for a target bit error rate (BER) of 10−6, thus resulting in a noticeable link enhancement of 4.5 km. Also, we demonstrate NRZ-based MDM-RoFSO link performance and availability in dust weather conditions using the BER, maximum reachable link range, and eye diagram as key performance parameters. We obtain a reliable transmission of 20 Gb/s-20 GHz data through HG00 and HG01 channels over a link range of 2500–108 m depending on the external dust weather condition. Furthermore, since this investigation shows the feasibility of RoFSO for small size cells, which is an essential feature of 5G mobile network, the proposed system can thus be implemented as a backhaul/fronthaul link for high-band (above 6 GHz) 5G services and for providing secure transmission of biomedical sensor data.
Free space optics is a light-wave communication technology that operates in the near-infrared region of the electromagnetic spectrum (about 700–1675 nm) and uses atmospheric channel as the transmission medium for both inter-satellite and terrestrial networks. However, the operational proficiency of free space optical communication system is highly affected by channel dynamics which cause signal attenuation that results in short link range. To master these shortcomings different methods have been suggested in the literature, from transceiver design and diverse channel models to adaptive algorithms. In this manuscript, the design and performance investigation of free space optical system has been carried out for three optical transmission windows; 850, 1310 and 1550 nm by means of on-off keying digital modulation technique. The system analysis has been done taking bit error rate, quality factor and received optical power as the performance metrics. Their variation pattern with respect to varying link parameters such as range, transmitted optical power and beam divergence has been investigated. In addition, the observations made are well validated with thorough mathematical justification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.