An electro-optical (EO) memory device is presented, which is based on a 3D nanostructured polymer scaffold of the amorphous blue phase III (BPIII) of cholesteric liquid crystals (LCs), which can impart optical isotropy, optical activity, and sub-millisecond EO response of BPIII to conventional nematic LCs. This functional scaffold also enables the first experimental observation of the long debated structure of BPIII.
The amorphous blue phase III of cholesteric liquid crystals, also known as the "blue fog," are among the rising stars in materials science that can potentially be used to develop next-generation displays with the ability to compete toe-to-toe with disruptive technologies like organic light-emitting diodes. The structure and properties of the practically unobservable blue phase III have eluded scientists for more than a century since it was discovered. This progress report reviews the developments in this field from both fundamental and applied research perspectives. The first part of this progress report gives an overview of the 130-years-long scientific tour-de-force that very recently resulted in the revelation of the mysterious structure of blue phase III. The second part reviews progress made in the past decade in developing electrooptical, optical, and photonic devices based on blue phase III. The strong and weak aspects of the development of these devices are underlined and criticized, respectively. The third- and-final part proposes ideas for further improvement in blue phase III technology to make it feasible for commercialization and widespread use.
We present a novel tunable thermoresponsive gelatin nanogel that shows a volume transition at ∼32 °C. A thermally induced volume reduction of more than 30× is observed due to the helix to random coil transition of gelatin chains confined in the nanogels. The physical process and key factors influencing thermoresponsive properties are investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), and polarimetry. The thermoresponsive properties of this nanogel can be exploited in the development of new types of stimuli-responsive, biomedically relevant materials based on natural polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.