The HYDRUS-based flow package for MODFLOW (the HPM or the HYDRUS package) is an existing unsaturated zone flow package for MODFLOW. In MODFLOW with the HPM, the groundwater modeling domain is discretized into regular grids that can be combined into multiple zones based on similarities in soil hydrology, topographical characteristics, and the depth to the groundwater. Each of these zones is assigned one unsaturated soil profile (the HPM profile). In this model, after every MODFLOW time step, the flux at the bottom of the HPM profile is given as an input recharge flux to MODFLOW. MODFLOW simulates groundwater flow, and the water table depth at the end of the MODFLOW time step is assigned as the bottom boundary condition in the HPM profile. The current coupling algorithm assumes that the groundwater table in the HPM profile remains constant throughout the entire MODFLOW time step. This results in unrealistic sudden inflow and/or outflow fluxes at the bottom of the HPM profile after every time step. The objective of this study was to develop a methodology to eliminate the error in the determination of the recharge flux at the bottom of the HPM profile. This was achieved by updating or modifying the pressure head profile in the HPM profile after every MODFLOW time step. The effectiveness and the applicability of the new coupling algorithm were evaluated using different case studies. The new coupling algorithm is effective in eliminating unrealistic sudden variations in the bottom flux in the HPM profiles.Abbreviations: 1D, one-dimensional; 3D, three-dimensional; HPM, HYDRUS Package for MODFLOW.In the past few decades, the coupling of one-dimensional (1D) unsaturated zone models with three-dimensional (3D) groundwater flow models to simulate various processes in and interactions between unsaturated and saturated soil zones has received a lot of attention. This is mainly because of the computational complexity and requirements of fully 3D variably saturated flow models when modeling larger domains with unsaturated soil zones (e.g., SHE model [Abbott et al., 1986], MODFLOW-SURFACT [HydroGeoLogic, 1996], FEFLOW [Diersch and Kolditz, 1998], TOUGH2 [Pruess et al., 1999] MODFLOW (Harbaugh et al., 2000) is a widely accepted 3D groundwater flow model. There have been many attempts to incorporate unsaturated zone flow models into MODFLOW (e.g., Havard et al., 1995;Facchi et al., 2004;Niswonger et al., 2006;Twarakavi et al., 2008;Lin et al., 2010;Zhu et al., 2011;Xu et al., 2012). The basic principle behind linking independent models for unsaturated and saturated soil zones is the exchange of information regarding the recharge flux from the unsaturated zone to the saturated zone and the elevation of the water table at appropriate time steps.The HYDRUS-based flow package for MODFLOW (further referred to as the HPM or the HYDRUS package) was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in unsaturated and saturated zones. In this package, the subroutines from the comput...
The "HYDRUS package for MODFLOW" is an existing MODFLOW package that allows MODFLOW to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package is based on incorporating parts of the HYDRUS-1D model (to simulate unsaturated water flow in the vadose zone) into MODFLOW (to simulate saturated groundwater flow). The coupled model is effective in addressing spatially variable saturated-unsaturated hydrological processes at the regional scale. However, one of the major limitations of this coupled model is that it does not have the capability to simulate solute transport along with water flow and therefore, the model cannot be employed for evaluating groundwater contamination. In this work, a modified unsaturated flow and transport package (modified HYDRUS package for MODFLOW and MT3DMS) has been developed and linked to the three-dimensional (3D) groundwater flow model MODFLOW and the 3D groundwater solute transport model MT3DMS. The new package can simulate, in addition to water flow in the vadose zone, also solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption. Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the modified HYDRUS package. The performance of the newly developed model is evaluated using HYDRUS (2D/3D), and the results indicate that the new model is effective in simulating the movement of water and contaminants in the saturated-unsaturated flow domains.
Abstract:The paper presents an evaluation of the combined use of the HYDRUS and SWI2 packages for MODFLOW as a potential tool for modeling recharge in coastal aquifers subject to saltwater intrusion. The HYDRUS package for MODFLOW solves numerically the one-dimensional form of the Richards equation describing water flow in variablysaturated media. The code computes groundwater recharge to or capillary rise from the groundwater table while considering weather, vegetation, and soil hydraulic property data. The SWI2 package represents in a simplified way variable-density flow associated with saltwater intrusion in coastal aquifers. Combining these two packages within the MODFLOW framework provides a more accurate description of vadose zone processes in subsurface systems with shallow aquifers, which strongly depend upon infiltration. The two packages were applied to a two-dimensional problem of recharge of a freshwater lens in a sandy peninsula, which is a typical geomorphologic form along the Baltic and the North Sea coasts, among other places. Results highlighted the sensitivity of calculated recharge rates to the temporal resolution of weather data. Using daily values of precipitation and potential evapotranspiration produced average recharge rates more than 20% larger than those obtained with weekly or monthly averaged weather data, leading to different trends in the evolution of freshwater-saltwater interfaces. Root water uptake significantly influenced both the recharge rate and the position of the freshwater-saltwater interface. The results were less sensitive to changes in soil hydraulic parameters, which in our study were found to affect average yearly recharge rates by up to 13%.
GOSSYM, a mechanistic, process-level cotton crop simulation model, has a two-dimensional (2D) gridded soil model called Rhizos that simulates the below-ground processes daily. Water movement is based on gradients of water content and not hydraulic heads. In GOSSYM, photosynthesis is calculated using a daily empirical light response function that requires calibration for response to elevated carbon dioxide (CO2). This report discusses improvements made to the GOSSYM model for soil, photosynthesis, and transpiration processes. GOSSYM’s predictions of below-ground processes using Rhizos are improved by replacing it with 2DSOIL, a mechanistic 2D finite element soil process model. The photosynthesis and transpiration model in GOSSYM is replaced with a Farquhar biochemical model and Ball-Berry leaf energy balance model. The newly developed model (modified GOSSYM) is evaluated using field-scale and experimental data from SPAR (soil–plant–atmosphere-research) chambers. Modified GOSSYM better predicted net photosynthesis (root mean square error (RMSE) 25.5 versus 45.2 g CO2 m−2 day−1; index of agreement (IA) 0.89 versus 0.76) and transpiration (RMSE 3.3 versus 13.7 L m−2 day−1; IA 0.92 versus 0.14) and improved the yield prediction by 6.0%. Modified GOSSYM improved the simulation of soil, photosynthesis, and transpiration processes, thereby improving the predictive ability of cotton crop growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.