Cardiac arrest (CA) entails significant risks of coma resulting in poor neurological and behavioral outcomes after resuscitation. Significant subsequent morbidity and mortality in post-CA patients are largely due to the cerebral and cardiac dysfunction that accompanies prolonged whole-body ischemia post-CA syndrome (PCAS). PCAS results in strong inflammatory responses including neuroinflammation response leading to poor outcome. Currently, there are no proven neuroprotective therapies to improve post-CA outcomes apart from therapeutic hypothermia. Furthermore, there are no acceptable approaches to promote cortical or cognitive arousal following successful return of spontaneous circulation (ROSC). Hypothalamic orexinergic pathway is responsible for arousal and it is negatively affected by neuroinflammation. However, whether activation of the orexinergic pathway can curtail neuroinflammation is unknown. We hypothesize that targeting the orexinergic pathway via intranasal orexin-A (ORXA) treatment will enhance arousal from coma and decrease the production of proinflammatory cytokines resulting in improved functional outcome after resuscitation. We used a highly validated CA rat model to determine the effects of intranasal ORXA treatment 30-minute post resuscitation. At 4hrs post-CA, the mRNA levels of proinflammatory markers (IL1β, iNOS, TNF-α, GFAP, CD11b) and orexin receptors (ORX1R and ORX2R) were examined in different brain regions. CA dramatically increased proinflammatory markers in all brain regions particularly in the prefrontal cortex, hippocampus and hypothalamus. Post-CA intranasal ORXA treatment significantly ameliorated the CA-induced neuroinflammatory markers in the hypothalamus. ORXA administration increased production of orexin receptors (ORX1R and ORX2R) particularly in hypothalamus. In addition, ORXA also resulted in early arousal as measured by quantitative electroencephalogram (EEG) markers, and recovery of the associated behavioral neurologic deficit scale score (NDS). Our results indicate that intranasal delivery of ORXA post-CA has an anti-inflammatory effect and accelerates cortical EEG and behavioral recovery. Beneficial outcomes from intranasal ORXA treatment lay the groundwork for therapeutic clinical approach to treating post-CA coma.
Objectives: Prolonged cardiac arrest is known to cause global ischemic brain injury and functional impairment. Upon resuscitation, electroencephalographic recordings of brain activity begin to resume and can potentially be used to monitor neurologic recovery. We have previously shown that intrathecal orexin shows promise as a restorative drug and arousal agent in rodents. Our goal is to determine the electrophysiology effects of orexin in a rodent model of asphyxial cardiac arrest, focusing on the electroencephalographic activity in the gamma and super-gamma bands (indicative of return of higher brain function). Design: Experimental animal study. Setting: University-based animal research laboratory. Subjects: Adult male Wistar rats. Interventions: In an established model of asphyxial cardiac arrest (n = 24), we treated half of Wistar rats with orexin administered intranasally by atomizer 30 minutes post return of spontaneous circulation in one of two dose levels (10 and 50 µM); the rest were treated with saline as control. Continuous electroencephalographic recording was obtained and quantitatively analyzed for the gamma fraction. Gamma and high-frequency super-gamma band measures were compared against clinical recovery according to Neuro-Deficit Score. Measurements and Main Results: Compared with the control cohort, the high-dose orexin cohort showed significantly better Neuro-Deficit Score 4 hours after return of spontaneous circulation (55.17 vs 47.58; p < 0.02) and significantly higher mean gamma fraction (0.251 vs 0.177; p < 0.02) in cerebral regions surveyed by rostral electrodes for the first 170 minutes after administration of orexin. Conclusions: Our findings support early and continuous monitoring of electroencephalography-based gamma activity as a marker of better functional recovery after intranasal administration of orexin as measured by Neuro-Deficit Score in an established animal model of asphyxial cardiac arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.