Text-entry aims to provide an effective and efficient pathway for humans to deliver their messages to computers. With the advent of mobile computing, the recent focus of text-entry research has moved from physical keyboards to soft keyboards. Current soft keyboards, however, increase the typo rate due to lack of tactile feedback and degrade the usability of mobile devices due to their large portion on screens. To tackle these limitations, we propose a fully imaginary keyboard (I-Keyboard) with a deep neural decoder (DND). The invisibility of I-Keyboard maximizes the usability of mobile devices and DND empowered by a deep neural architecture allows users to start typing from any position on the touch screens at any angle. To the best of our knowledge, the eyes-free ten-finger typing scenario of I-Keyboard which does not necessitate both a calibration step and a predefined region for typing is first explored in this work. For the purpose of training DND, we collected the largest user data in the process of developing I-Keyboard. We verified the performance of the proposed I-Keyboard and DND by conducting a series of comprehensive simulations and experiments under various conditions. I-Keyboard showed 18.95% and 4.06% increases in typing speed (45.57 WPM) and accuracy (95.84%), respectively over the baseline.
We present a challenging dataset, ChangeSim, aimed at online scene change detection (SCD) and more. The data is collected in photo-realistic simulation environments with the presence of environmental non-targeted variations, such as air turbidity and light condition changes, as well as targeted object changes in industrial indoor environments. By collecting data in simulations, multi-modal sensor data and precise ground truth labels are obtainable such as the RGB image, depth image, semantic segmentation, change segmentation, camera poses, and 3D reconstructions. While the previous online SCD datasets evaluate models given well-aligned image pairs, ChangeSim also provides raw unpaired sequences that present an opportunity to develop an online SCD model in an end-to-end manner, considering both pairing and detection. Experiments show that even the latest pair-based SCD models suffer from the bottleneck of the pairing process, and it gets worse when the environment contains the non-targeted variations. Our dataset is available at https://sammica.github.io/ChangeSim/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.