The aim of this study is to identify potential drug-like molecules against SARS-CoV-2 virus among the natural antiviral compounds published in the Encyclopedia of Traditional Chinese Medicine. To test inhibition capability of these compounds first, we docked them with Spike protein, angiotensin-converting enzyme 2 (ACE2) (PDB ID: 6M0J) and neuropilin 1 (NRP1) (PDB ID: 7JJC) receptors, and found significant docking scores with extra precision up to −11 kcal/mol. Then, their stability in the binding pockets were further evaluated with molecular dynamics simulation. Eight natural antiviral compounds were identified as potential inhibitors against SARS-CoV-2 cell entry after 200 ns molecular dynamics simulations. We found CMP-3, CMP-4, CMP-5, CMP-6 and CMP-8 are strong binders for the spike protein, CMP-1, CMP-2, CMP-4, CMP-5 and CMP-7 are strong binders for the neuropilin receptor, and CMP-5 is a strong binder for the ACE2. Quercetin derivatives (CMP-4, CMP-5, CMP-6 and CMP-7) were found highly stable in the active domain of NRP1, ACE2 and Spike protein. Especially, CMP-5 showed an inhibitory activity for all targets. These natural antivirals may be potential drug candidates for the prevention of SARS-CoV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.