Today threat landscape evolving at the rapid rate with many organization continuously face complex and malicious cyber threats. Cybercriminal equipped by better skill, organized and well-funded than before. Cyber Threat Intelligence (CTI) has become a hot topic and being under consideration for many organization to counter the rise of cyber-attacks. The aim of this paper is to review the existing research related to CTI. Through the literature review process, the most basic question of what CTI is examines by comparing existing definitions to find common ground or disagreements. It is found that both organization and vendors lack a complete understanding of what information is considered to be CTI, hence more research is needed in order to define CTI. This paper also identified current CTI product and services that include threat intelligence data feeds, threat intelligence standards and tools that being used in CTI. There is an effort by specific industry to shared only relevance threat intelligence data feeds such as Financial Services Information Sharing and Analysis Center (FS-ISAC) that collaborate on critical security threats facing by global financial services sector only. While research and development center such as MITRE working in developing a standards format (e.g.; STIX, TAXII, CybOX) for threat intelligence sharing to solve interoperability issue between threat sharing peers. Based on the review for CTI definition, standards and tools, this paper identifies four research challenges in cyber threat intelligence and analyses contemporary work carried out in each. With an organization flooded with voluminous of threat data, the requirement for qualified threat data analyst to fully utilize CTI and turn the data into actionable intelligence become more important than ever. The data quality is not a new issue but with the growing adoption of CTI, further research in this area is needed.
In recent year, an adversary has improved their Tactic, Technique and Procedure (TTPs) in launching cyberattack that make it less predictable, more persistent, resourceful and better funded. So many organisation has opted to use Cyber Threat Intelligence (CTI) in their security posture in attributing cyberattack effectively. However, to fully leverage the massive amount of data in CTI for threat attribution, an organisation needs to spend their focus more on discovering the hidden knowledge behind the voluminous data to produce an effective cyberattack attribution. Hence this paper emphasized on the research of association analysis in CTI process for cyber attack attribution. The aim of this paper is to formulate association ruleset to perform the attribution process in the CTI. The Apriori algorithm is used to formulate association ruleset in association analysis process and is known as the CTI Association Ruleset (CTI-AR). Interestingness measure indicator specially support (s), confidence (c) and lift (l) are used to measure the practicality, validity and filtering the CTI-AR. The results showed that CTI-AR effectively identify the attributes, relationship between attributes and attribution level group of cyberattack in CTI. This research has a high potential of being expanded into cyber threat hunting process in providing a more proactive cybersecurity environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.