We address a central issue that arises within element-based topology optimization. To achieve a sufficiently well-defined material interface, one requires a highly refined finite element mesh; however, this leads to an increased computational cost due to the solution of the finite element analysis problem. By generating an optimal structure on a coarse mesh and using an artificial neural network to map this coarse solution to a refined mesh, we can greatly reduce computational time. This approach resulted in time savings of up to 85% for test cases considered. This significant advantage in computational time also preserves the structural integrity when compared with a fine-mesh optimization with limited error. Along with the savings in computational time, the boundary edges become more refined during the process, allowing for a sharp transition from solid to void. This improved boundary edge can be leveraged to improve the manufacturability of the optimized designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.