LiFePO 4 powders were synthesized under various conditions and the performance of the cathodes was evaluated using coin cells. The samples were characterized by X-ray diffraction, scanning electron microscope observations, Brunauer, Emmett, and Teller surface area measurements, particle-size distribution measurements, and Mo ¨ssbauer spectroscopy. Ab initio calculation was used to confirm the experimental redox potentials and Mo ¨ssbauer parameters. The choice of a moderate sintering temperature (500°C Ͻ T Ͻ 600°C) and a homogeneous precursor enabled nearly perfect utilization of Ͼ95% of the 170 mAh/g theoretical capacity at room temperature. There are two main obstacles to achieving optimum charge/discharge performance of LiFePO 4 : ͑i͒ undesirable particle growth at T Ͼ 600°C and ͑ii͒ the presence of a noncrystalline residual Fe 3ϩ phase at T Ͻ 500°C.
Rechargeable lithium batteries have ushered the wireless revolution over last two decades and are now matured to enable green automobiles. However, the growing concern on scarcity and large-scale applications of lithium resources have steered effort to realize sustainable sodium-ion batteries, Na and Fe being abundant and low-cost charge carrier and redox centre, respectively. However, their performance is limited owing to low operating voltage and sluggish kinetics. Here we report a hitherto-unknown material with entirely new composition and structure with the first alluaudite-type sulphate framework, Na2Fe2(SO4)3, registering the highest-ever Fe3+/Fe2+ redox potential at 3.8 V (versus Na, and hence 4.1 V versus Li) along with fast rate kinetics. Rare-metal-free Na-ion rechargeable battery system compatible with the present Li-ion battery is now in realistic scope without sacrificing high energy density and high power, and paves way for discovery of new earth-abundant sustainable cathodes for large-scale batteries.
A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold–gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold–gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold–gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.
Vying for newer sodium-ion chemistry for rechargeable batteries, Na2FeP2O7 pyrophosphate has been recently unveiled as a 3 V high-rate cathode. In addition to its low cost and promising electrochemical performance, here we demonstrate Na2FeP2O7 as a safe cathode with high thermal stability. Chemical/electrochemical desodiation of this insertion compound has led to the discovery of a new polymorph of NaFeP2O7. High-temperature analyses of the desodiated state NaFeP2O7 show an irreversible phase transition from triclinic (P1̅) to the ground state monoclinic (P21/c) polymorph above 560 °C. It demonstrates high thermal stability, with no thermal decomposition and/or oxygen evolution until 600 °C, the upper limit of the present investigation. This high operational stability is rooted in the stable pyrophosphate (P2O7)4– anion, which offers better safety than other phosphate-based cathodes. It establishes Na2FeP2O7 as a safe cathode candidate for large-scale economic sodium-ion battery applications.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.