With advances in technological sciences, individuals can utilize low-cost air monitoring sensors to record air quality at homes, schools, and businesses. Air quality data collected from LCSs are publicly accessible, informing the community of the air quality around them. It is important to measure local and regional particulate matter (PM) concentrations to keep the public involved, especially those with specific health concerns, such as asthma, wheezing, and seasonal allergies. The number of studies involving the use of LCSs to evaluate PM levels is increasing with more manufacturers producing ‘easy to use’ LCSs targeting the public. The goal of this review is to understand and incorporate the findings from studies using LCSs to analyze PM of various sizes, i.e., PM1, PM2.5, PM4, and PM10. This review integrates analyses from 51 different studies in 14 countries, including the U.S. The findings indicate spatial heterogeneity in the PM concentrations across a region. Some of the low-cost sensor manufacturers mentioned in these studies include Plantower, AQMesh, Alpha-sense, PurpleAir, E-MOTEs, and Shinyei. This review emphasizes the importance of LCSs in the field of PM monitoring and its potential to inform the public about their exposure burden, and to aid state and federal decision makers in formulating policies for mitigating the effects of PM pollution in any urban or rural setting.
The holy town of Joshimath, gateway to the India-China border and religious places like Badrinath, Hemkunt Sahab, Valley of flowers in the Uttarakhand state of India experienced cracks in many of the residential and commercial buildings in the month of November-December 2022 which created panic and relocation of people. The reason(s) for the subsidence is still not known but using the InSAR technology and data from Sentinel-1, SAR data for the region was processed using HyP3 and MintPy for January-December 2022 to understand when the phenomenon started and how much uplift/subsidence the area has underwent in the last one year, as no such study is available till today. The entire town can be classified into two zones with respect to the annual subsidence values. Severe subsidence has been observed in the North and East regions whereas most of the southern region experienced moderate to low subsidence. Since the town is built on the debris of an old landslide, the subsidence may be attributed to the change in the course of the underground water channels due to heavy and continuous construction happening in the region and also due to drop in the water table. The results shows that the subsidence in the region was ongoing since June (from January till May, almost negligible vertical movement was recorded) which accelerated after September (when an uplift was recorded which lasted till October), while the subsidence peaked in the month of December with recorded subsidence of as much as 10 cm in some areas located around the Joshimath town, where most of the residential and commercial buildings are located.
Air pollution is a major public health concern. The region of South Texas in the United States has experienced high levels of air pollution in recent years due to an increase in population, cross-border trade between the U.S.A. and Mexico, and high vehicular activity. This review assesses the relationships between human health and air pollution in South Texas. A thorough scientific search was performed using PubMed, Science Direct, and ProQuest, with most of the literature focusing on the source apportionment of particulate matter that is 2.5 microns or less in width (PM2.5), Carbon Dioxide (CO2), carbon monoxide (CO), Black Carbon (BC), and associated health risks for children and pregnant women. Findings from the source apportionment studies suggest the role of industries, automobiles emissions, agricultural burning, construction work, and unpaved roads in the overall deterioration of air quality and deleterious health effects, such as respiratory and cardiovascular diseases. This review demonstrates the pressing need for more air pollution and health effects studies in this region, especially the Brownsville–Harlingen–McAllen metropolitan area.
Agricultural stubble burning is the third largest source of air pollution after vehicular and industrial emissions. Fine particulate matter (PM2.5), volatile organic compounds (VOCs), carbon monoxide (CO), nitrogen dioxide (NO2), and black carbon (BC) are some of the pollutants emitted during such burning events. The Lower Rio Grande Valley (RGV) region of South Texas is a major hub of agricultural activity, and sugarcane farming is one of them. Unfortunately, this activity results in episodic events of high air pollution in this low-resourced, Hispanic/Latino majority region of the U.S.–Mexico border. This study presents results from a sugarcane site in La Feria, South Texas, where the air quality was monitored before, during, and after the sugarcane stubble burning. Various parameters were monitored on an hourly basis from 24 February 2022 to 4 April 2022. Our results demonstrate high levels of all the monitored pollutants during the burning phase in contrast to the pre- and post-burning period. The black carbon levels went up to 6.43 µg m−3 on the day of burning activity. An increase of 10%, 11.6%, 25.29%, 55%, and 67.57% was recorded in the PM1, PM2.5, PM10, Black Carbon, and CO levels, respectively, during the burning period in comparison with the total study period. The absorption Ångström exponent value reached a maximum value of 2.03 during the burning activity. ThePM2.5/PM10 ratio was 0.87 during the burning activity. This study also highlights the importance for continuous monitoring of air quality levels due to stubble burning in the Lower Rio Grande Valley Region of South Texas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.