The corneal epithelium is maintained by a population of stem cells known as limbal stem cells (LSCs) due to their location in the basal layer of the outer border of the cornea known as the limbus. Treatment of limbal stem cell deficiency (LSCD) has been achieved with transplantation of ex vivo expanded LSCs taken from a small biopsy of limbus. This is a relatively new technique, and as such, specific national or international guidance has yet to be established. Because of the lack of such specific guidance, our group has sought to minimize any risk to the patient by adopting certain modifications to the research methodologies in use at present. These include the replacement of all non‐human animal products from the culture system and the production of all reagents and cultures under Good Manufacturing Practice conditions. In addition, for the first time, a strictly defined uniform group of patients with total unilateral LSCD and no other significant ocular conditions has been used to allow the success or failure of treating LSCD to be attributable directly to the proposed stem cell therapy. A prospectively designed study with strict inclusion and exclusion criteria was used to enroll patients from our database of patients with unilateral LSCD. Eight eyes of eight consecutive patients with unilateral total LSCD treated with ex vivo expanded autologous LSC transplant on human amniotic membrane (HAM) with a mean follow‐up of 19 (RANGE) months were included in the study. Postoperatively, satisfactory ocular surface reconstruction with a stable corneal epithelium was obtained in all eyes (100%). At last examination, best corrected visual acuity improved in five eyes and remained unchanged in three eyes. Vision impairment and pain scores improved in all patients (p < .05). This study demonstrates that transplantation of autologous limbal epithelial stem cells cultured on HAM without the use of non‐human animal cells or products is a safe and effective method of reconstructing the corneal surface and restoring useful vision in patients with unilateral total LSCD. STEM CELLS 2010;28:597–610
Human embryonic stem cells (hESCs) are pluripotent cells capable of differentiating into any cell type of the body. It has long been known that the adult stem cell niche is vital for the maintenance of adult stem cells. The cornea at the front of the eye is covered by a stratified epithelium that is renewed by stem cells located at its periphery in a region known as the limbus. These so-called limbal stem cells are maintained by factors within the limbal microenvironment, including collagen IV in basement membrane and limbal fibroblasts in the stroma. Because this niche is very specific to the stem cells (rather than to the more differentiated cells) of the corneal epithelium, it was hypothesized that replication of these factors in vitro would result in hESC differentiation into corneal epithelial-like cells. Indeed, here we show that culturing of hESC on collagen IV using medium conditioned by the limbal fibroblasts results in the loss of pluripotency and differentiation into epithelial-like cells. Further differentiation results in the formation of terminally differentiated epithelial-like cells not only of the cornea but also of skin. Scanning electron microscopy shows that some differences exist between hESC-derived and adult limbal epithelial-like cells, necessitating further investigation using in vivo animal models of limbal stem cell deficiency. Such a model of hESC differentiation is useful for understanding the early events of epithelial lineage specification and to the eventual potential application of epithelium differentiated from hESC for clinical conditions of epithelial stem cell loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.