Localization is an important required task for enabling vehicle autonomy. Localization entails the determination of the position of the center of mass and orientation of a vehicle from the available measurements. In this paper, we focus on localization by using the range measurements available to a vehicle from the communication of its multiple onboard receivers with roadside beacons. The model proposed for measurement is as follows: the true distance between a receiver and a beacon is at most equal to a predetermined function of the range measurement. The proposed procedure for localization is as follows: Based on the range measurements specific to a receiver from the beacons, a finite LP (linear programming) is proposed to estimate the location of the receiver. The estimate is essentially the Chebychev center of the set of possible locations of the receiver. In the second step, the location estimates of the vehicle are corrected using rigid body motion constraints and the orientation of the rigid body is thus determined. Two numerical examples provided at the end corroborate the procedures developed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.