We present OrbNet Denali, a machine learning model for an electronic structure that is designed as a drop-in replacement for ground-state density functional theory (DFT) energy calculations. The model is a message-passing graph neural network that uses symmetry-adapted atomic orbital features from a low-cost quantum calculation to predict the energy of a molecule. OrbNet Denali is trained on a vast dataset of 2.3 × 106 DFT calculations on molecules and geometries. This dataset covers the most common elements in biochemistry and organic chemistry (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I) and charged molecules. OrbNet Denali is demonstrated on several well-established benchmark datasets, and we find that it provides accuracy that is on par with modern DFT methods while offering a speedup of up to three orders of magnitude. For the GMTKN55 benchmark set, OrbNet Denali achieves WTMAD-1 and WTMAD-2 scores of 7.19 and 9.84, on par with modern DFT functionals. For several GMTKN55 subsets, which contain chemical problems that are not present in the training set, OrbNet Denali produces a mean absolute error comparable to those of DFT methods. For the Hutchison conformer benchmark set, OrbNet Denali has a median correlation coefficient of R2 = 0.90 compared to the reference DLPNO-CCSD(T) calculation and R2 = 0.97 compared to the method used to generate the training data (ωB97X-D3/def2-TZVP), exceeding the performance of any other method with a similar cost. Similarly, the model reaches chemical accuracy for non-covalent interactions in the S66x10 dataset. For torsional profiles, OrbNet Denali reproduces the torsion profiles of ωB97X-D3/def2-TZVP with an average mean absolute error of 0.12 kcal/mol for the potential energy surfaces of the diverse fragments in the TorsionNet500 dataset.
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.ACM Reference FormatAbigail Dommer1†, Lorenzo Casalino1†, Fiona Kearns1†, Mia Rosenfeld1, Nicholas Wauer1, Surl-Hee Ahn1, John Russo,2 Sofia Oliveira3, Clare Morris1, AnthonyBogetti4, AndaTrifan5,6, Alexander Brace5,7, TerraSztain1,8, Austin Clyde5,7, Heng Ma5, Chakra Chennubhotla4, Hyungro Lee9, Matteo Turilli9, Syma Khalid10, Teresa Tamayo-Mendoza11, Matthew Welborn11, Anders Christensen11, Daniel G. A. Smith11, Zhuoran Qiao12, Sai Krishna Sirumalla11, Michael O’Connor11, Frederick Manby11, Anima Anandkumar12,13, David Hardy6, James Phillips6, Abraham Stern13, Josh Romero13, David Clark13, Mitchell Dorrell14, Tom Maiden14, Lei Huang15, John McCalpin15, Christo- pherWoods3, Alan Gray13, MattWilliams3, Bryan Barker16, HarindaRajapaksha16, Richard Pitts16, Tom Gibbs13, John Stone6, Daniel Zuckerman2*, Adrian Mulholland3*, Thomas MillerIII11,12*, ShantenuJha9*, Arvind Ramanathan5*, Lillian Chong4*, Rommie Amaro1*. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing ‘21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis. ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI
Standard enthalpies, entropies, and heat capacities are calculated for 16 813 halocarbons using an automated high-fidelity thermochemistry workflow. This workflow generates conformers at density functional tight-binding (DFTB) level, optimizes geometries, calculates harmonic frequencies, and performs 1D hindered rotor scans at DFT level, and computes electronic energies at a Gaussian 4 (G4) level. The computed enthalpies of formation for 400 molecules show good agreement with literature references, but the majority of the calculated species have no reference in the literature. Thus, this work presents G4-computed thermochemistry for thousands of novel halocarbons. This new data set is used to train an extensive ensemble of group additivity values and hydrogen bond increment groups within the Reaction Mechanism Generator (RMG) framework. On average, the new group values estimate standard enthalpies for halogenated hydrocarbons within 3 kcal/mol of their G4 values. A significant contribution toward automated mechanism generation of halocarbon combustion, this research provides thermochemical data for thousands of novel halogenated species and presents a self-consistent set of halogen group additivity values.
Standard enthalpies, entropies, and heat capacities are calculated for 16,813 halocarbons using an automated high-fidelity thermochemistry workflow. This workflow generates conformers at density functional tight binding (DFTB) level, optimizes geometries, calculates harmonic frequencies, and performs 1D hindered rotor scans at DFT level, and computes electronic energies at G4 level. The computed enthalpies of formation for 400 molecules show good agreement with literature references, but the majority of the calculated species have no reference in the literature. Thus, this work presents the most accurate thermochemistry for many halocarbons to date. This new data set is used to train an extensive ensemble of group additivity values and hydrogen bond increment groups within the Reaction Mechanism Generator (RMG) framework. On average, the new group values estimate standard enthalpies for halogenated hydrocarbons within 3 kcal/mol of their G4 values. A significant contribution towards automated mechanism generation of halocarbon combustion, this research provides thermochemical data for thousands of novel halogenated species and presents a self-consistent set of halogen group additivity values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.