BackgroundThe continuing morbidity and mortality associated with infection with malaria parasites highlights the urgent need for a vaccine. The efficacy of sub-unit vaccines tested in clinical trials in malaria-endemic areas has thus far been disappointing, sparking renewed interest in the whole parasite vaccine approach. We previously showed that a chemically attenuated whole parasite asexual blood-stage vaccine induced CD4+ T cell-dependent protection against challenge with homologous and heterologous parasites in rodent models of malaria.MethodsIn this current study, we evaluated the immunogenicity and safety of chemically attenuated asexual blood-stage Plasmodium falciparum (Pf) parasites in eight malaria-naïve human volunteers. Study participants received a single dose of 3 × 107 Pf pRBC that had been treated in vitro with the cyclopropylpyrolloindole analogue, tafuramycin-A.ResultsWe demonstrate that Pf asexual blood-stage parasites that are completely attenuated are immunogenic, safe and well tolerated in malaria-naïve volunteers. Following vaccination with a single dose, species and strain transcending Plasmodium-specific T cell responses were induced in recipients. This included induction of Plasmodium-specific lymphoproliferative responses, T cells secreting the parasiticidal cytokines, IFN-γ and TNF, and CD3+CD45RO+ memory T cells. Pf-specific IgG was not detected.ConclusionsThis is the first clinical study evaluating a whole parasite blood-stage malaria vaccine. Following administration of a single dose of completely attenuated Pf asexual blood-stage parasites, Plasmodium-specific T cell responses were induced while Pf-specific antibodies were not detected. These results support further evaluation of this chemically attenuated vaccine in humans.Trial registrationTrial registration: ACTRN12614000228684. Registered 4 March 2014.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1173-9) contains supplementary material, which is available to authorized users.
BackgroundThe ability to undertake controlled human malaria infection (CHMI) studies for preliminary evaluation of malaria vaccine candidates and anti-malaria drug efficacy has been limited by the need for access to sporozoite infected mosquitoes, aseptic, purified, cryopreserved sporozoites or blood-stage malaria parasites derived ex vivo from malaria infected individuals. Three different strategies are described for the manufacture of clinical grade cultured malaria cell banks suitable for use in CHMI studies.MethodsGood Manufacturing Practices (GMP)-grade Plasmodium falciparum NF54, clinically isolated 3D7, and research-grade P. falciparum 7G8 blood-stage malaria parasites were cultured separately in GMP-compliant facilities using screened blood components and then cryopreserved to produce three P. falciparum blood-stage malaria cell banks. These cell banks were evaluated according to specific criteria (parasitaemia, identity, viability, sterility, presence of endotoxin, presence of mycoplasma or other viral agents and in vitro anti-malarial drug sensitivity of the cell bank malaria parasites) to ensure they met the criteria to permit product release according to GMP requirements.ResultsThe P. falciparum NF54, 3D7 and 7G8 cell banks consisted of >78% ring stage parasites with a ring stage parasitaemia of >1.4%. Parasites were viable in vitro following thawing. The cell banks were free from contamination with bacteria, mycoplasma and a broad panel of viruses. The P. falciparum NF54, 3D7 and 7G8 parasites exhibited differential anti-malarial drug susceptibilities. The P. falciparum NF54 and 3D7 parasites were susceptible to all anti-malaria compounds tested, whereas the P. falciparum 7G8 parasites were resistant/had decreased susceptibility to four compounds. Following testing, all defined release criteria were met and the P. falciparum cell banks were deemed suitable for release. Ethical approval has been obtained for administration to human volunteers.ConclusionsThe production of cultured P. falciparum blood-stage malaria cell banks represents a suitable approach for the generation of material suitable for CHMI studies. A key feature of this culture-based approach is the ability to take research-grade material through to a product suitable for administration in clinical trials.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0663-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.