The performance of machine learning interatomic potentials relies on the quality of the training dataset. In this work, we present an approach for generating diverse and representative training data points which initiates with ab initio calculations for bulk structures. The data generation and potential construction further proceed side-byside in a cyclic process of training the neural network and crystal structure prediction based on the developed interatomic potentials. All steps of the data generation and potential development are performed with minimal human intervention. We show the reliability of our approach by assessing the performance of neural network potentials developed for two inorganic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.