In the paper industry, chlorine is often to use to treat the pulp for bleaching. After pulping, a large amount of xylan is present in the fiber. Xylanase can be used to degrade xylan in an eco-friendly process called biobleaching, which can help minimize the usage of chlorine in the delignification process. However, a bottleneck in the adoption of biobleaching is the cost of xylanase and the requirement that xylanase be active and stable at extreme conditions. Here, we investigated whether using sodium alginate beads to immobilize an extracellular xylanase from Bacillus subtilis (Lucky9) can reduce the potential cost of enzyme usage. The optimal pH and the activity of the immobilized enzyme was increased at optimal temperature compared to the free enzyme. In addition, immobilized xylanase was shown to be more stable than free xylanase. The results of this study suggest that the immobilized xylanase has potential applications in the biobleaching industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.