So far, many of the deep learning approaches for voice conversion produce good quality speech by using a large amount of training data. This paper presents a Deep Bidirectional Long Short-Term Memory (DBLSTM) based voice conversion framework that can work with a limited amount of training data. We propose to implement a DBLSTM based average model that is trained with data from many speakers. Then, we propose to perform adaptation with a limited amount of target data. Last but not least, we propose an error reduction network that can improve the voice conversion quality even further. The proposed framework is motivated by three observations. Firstly, DBLSTM can achieve a remarkable voice conversion by considering the long-term dependencies of the speech utterance. Secondly, DBLSTM based average model can be easily adapted with a small amount of data, to achieve a speech that sounds closer to the target. Thirdly, an error reduction network can be trained with a small amount of training data, and can improve the conversion quality effectively. The experiments show that the proposed voice conversion framework is flexible to work with limited training data and outperforms the traditional frameworks in both objective and subjective evaluations.
In our previous work, we derived the acoustic features, that contribute to the perception of warmth and competence in synthetic speech. As an extension, in our current work, we investigate the impact of the derived vocal features in the generation of the desired characteristics. The acoustic features, spectral flux, F1 mean and F2 mean and their convex combinations were explored for the generation of higher warmth in female speech. The voiced slope, spectral flux, and their convex combinations were investigated for the generation of higher competence in female speech. We have employed a feature quantization approach in the traditional end-to-end tacotron based speech synthesis model. The listening tests have shown that the convex combination of acoustic features displays higher Mean Opinion Scores of warmth and competence when compared to that of individual features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.